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SUMMARY

Metastasis to the liver drives mortality in pancreatic ductal adenocarcinoma (PDAC), yet mechanisms of colo-
nization remain unclear. Using genomic barcoding, we developed a clonal competition model under immune
surveillance, isolating murine PDAC subclones with high or low liver-colonization potential. Combined tran-
scriptome and chromatin-accessibility analyses revealed a distinct “metastatic-potential axis,” separate
from the normal-to-PDAC and classical-basal axes. We established “MetScore” as a biomarker of this
axis. MetScore distinguishes metastases from primary PDAC tumors in patients, predicts outcomes beyond
classical-basal classifications, and generalizes across carcinoma subtypes, suggesting conserved coloniza-
tion mechanisms. High-MetScore PDAC cells preferentially occupy immune cell-enriched niches, suggesting
they remodel the metastatic microenvironment. Functional screening identified c-Fos as a positive mediator
of colonization and a candidate anti-metastatic target. Collectively, we identify a cell-state axis underpinning
PDAC liver colonization, introduce MetScore as a broadly applicable biomarker, and nominate actionable tar-
gets for peri-operative therapeutic intervention.

INTRODUCTION Addressing these challenges requires a more nuanced under-
standing of PDAC’s molecular heterogeneity. PDAC has been
divided into two major transcriptional subtypes,*° termed “clas-

sical” and “basal,” which subsequent single-cell RNA-sequencing

The majority of patients with localized pancreatic ductal adeno-
carcinoma (PDAC) experience distant recurrence following sur-

gical resection,” a uniformly fatal event. Liver is the most com-
mon metastatic site, and hepatic spread is associated with a
particularly poor prognosis.” Current adjuvant therapies provide
only modest benefit® and fail to prevent recurrence in many pa-
tients. These challenges highlight a critical unmet need: under-
standing the molecular mechanisms that enable PDAC liver
metastasis to guide the development of novel therapeutic strate-
gies aimed at its interception.

Gheck for
Updates

(scRNA-seq) analyses”® showed to exist as a spectrum —or axis —
within individual tumors. This framework has proved clinically use-
ful: a classical-basal scoring system called purity independent
subtyping of tumors (PurlST) is predictive of response to chemo-
therapy, and a clinical trial is underway to evaluate whether PurlST-
guided adjuvant therapy choice improves patient outcomes
(ClinicalTrials.gov: NCT06483555). While there is increased preva-
lence of liver metastases in patients with the basal subtype, '° liver
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metastasis is frequent in both subtypes, and the specific transcrip-
tomic features determining metastatic potential are poorly
understood.

Metastasis encompasses multiple stages, including local inva-
sion, extravasation into the circulation, survival as circulating
cells, extravasation at distant sites, navigating initial interactions
with the local microenvironment (including resident immune
cells), and proliferation to form an overt macrometastasis. In the
adjuvant setting (where the primary tumor has been removed),
only the post-extravasation stages, collectively referred to here
as “colonization,” remain therapeutically actionable. However,
dissecting the molecular features that endow tumor cells with
liver-colonization potential is challenging, as direct comparison
of metastases with matched primary tumors would fail to
deconvolve features that allowed the seeding subclone(s) to colo-
nize from those that evolved during adaptation to the liver
microenvironment.

To address this gap, we leveraged genomic barcoding to
develop a clonal competition model of PDAC liver colonization
under immune surveillance in mice. Using this model, we identi-
fied subclones with high or low colonization. Multi-omic compar-
ison of these subclones revealed a set of genes with positive or
negative association with colonization, establishing a novel met-
astatic-potential axis orthogonal to both the normal-to-PDAC
and classical-basal axes. We subsequently demonstrated that
this metastatic-potential axis, encapsulated in a single-sample
scoring metric called “MetScore,” is conserved between mouse
and human PDAC and across multiple other human carcinomas.
We characterized the microenvironments of highly and poorly
metastatic PDAC cells in human tumors and found that the
former is enriched for immune cells and depleted for non-im-
mune stromal cells. Finally, we performed a functional screen
of MetScore genes associated with immune response, revealing
c-Fos as a positive mediator of liver colonization. Overall, our
study identifies a cell-state axis underlying metastatic potential
in multiple carcinomas and sets the stage for developing both
diagnostic tools for assessing metastasis risk and novel thera-
pies targeting the colonization steps of the metastatic cascade.

RESULTS

Isolation of primary PDAC subclones with high and low
liver-colonization potential
To characterize the molecular determinants of liver-colonization
potential within PDAC tumors, we obtained cells isolated from
the primary tumors of two independent KPC mice'''® (i.e.,
Pdx1-Cre;LSL-Kras®'2P/*;Trp537172H/*) which we denote here
as KPC-1 and KPC-2. We barcoded each line by transposition
of randomized DNA sequences'*'® (Figure 1A). This strategy re-
sults in each cell receiving a unique combination of sequences
that can act as a barcode for tracking it. From barcoded mix-
tures, we sorted single cells and expanded them to generate
monoclonal lines. We obtained 10 barcoded subclones from
KPC-1 and seven from KPC-2 and identified the barcode in
each subclone using high-throughput sequencing.

We next quantified the liver-colonization potential of the iso-
lated subclones. Equal mixtures of all KPC-1 or KPC-2 sub-
clones were transplanted into immunocompetent syngeneic
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C57BL/6 mice via splenic injection, a standard approach for
modeling metastasis to the liver that includes only the post-
extravasation steps'?'® (Figure 1B). After 4 weeks, liver metas-
tases were harvested and barcode sequencing was performed
to identify contributing subclones. The majority (80%) of metas-
tases were polyclonal, with a plurality being biclonal (Figure 1C),
consistent with prior reports.'®"'” To quantify colonization po-
tential while minimizing confounding by post-seeding prolifera-
tion, we measured the frequency with which each subclone ap-
peared across metastases, rather than its relative abundance.
This analysis revealed a broad spectrum of colonization capac-
ities within both KPC-1 and KPC-2 cohorts, with some sub-
clones detected in nearly all metastases and others observed
rarely (Figure 1D). Subclones present in >50% of metastases
were classified as met-high, and the remainder as met-low. To
evaluate whether this phenotype was liver specific, we repeated
the assay using intraperitoneal injection, which models post-
dissemination colonization of the peritoneum'® (Figures 1B-
1D). Subclonal colonization potential was consistent across
both anatomic sites, suggesting that the met-high subclones
possess a general advantage in metastatic colonization rather
than liver-specific tropism.

To identify interactions between subclones, we systematically
tested whether each pair of subclones was co-represented more
or less than would be expected by chance. There were no signif-
icant interactions in the KPC-1 experiments (Figure S1A). How-
ever, in the KPC-2 liver-colonization experiment, there were
several instances of met-low subclones being significantly over-
represented in the presence of a met-high subclone or another
met-low subclone (Fisher’s exact test, false discovery rate
[FDR] <0.05). These results suggest that met-low subclones
can successfully colonize by “piggybacking” on met-high sub-
clones or cooperating with other met-low subclones. In contrast,
only met-high subclones could form metastases independently
(Figure S1B).

To exclude differences in proliferative capacity as a confound-
ing factor, we conducted in vitro proliferation and competition
assays, neither of which demonstrated a growth advantage for
met-high subclones (Figures 1E and 1F). All subclones exhibited
recombination of the LSL-Kras®?P/* and LSL-Trp537772H+ |-
leles (Figure S1C). Additionally, all but one subclone (KPC-
2_LoA) had undergone loss-of-heterozygosity at the wild-type
(WT) Trp53 locus; KPC-2_LoA was excluded from further ana-
lyses to limit our cohort to fully transformed subclones.™®

Collectively, these results establish that our met-high PDAC
subclones have an advantage in metastatic colonization
compared to the met-low.

Identification of genes defining met-high and met-low
states

We reasoned that successful cells in our clonal-competition assay
must realize their advantage in completing the latter half of the met-
astatic cascade immediately after injection; therefore, these cells
are likely to be expressing the genes that confer them this advan-
tage at the time of injection. We further reasoned that genes
responsible for conferring this stable metastatic advantage are
likely to be under regulation required for mitotic transmission. In
this work, we define “epigenetics” as the mitotically heritable
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Figure 1. Isolation of primary PDAC subclones with high and low liver-colonization potential

(A) Schematic overview.

(B) Representative gross pathology and H&E-stained formalin-fixed paraffin-embedded (FFPE) sections. Scale bars: 500 pm and 50 pm (insets).

(C and D) (C) Histograms of tumor clonalities —the number of unique subclones per tumor. (D) Detection frequency of each subclone. Points, individual mice; bars,
group means + SEM. Sample sizes: KPC-1 liver, 27 metastases (three mice); KPC-1 peritoneum, 24 metastases (five mice); KPC-2 liver, 46 metastases (five mice);
KPC-2 peritoneum, 60 metastases (five mice).

(E) In vitro growth curves. Points represent the mean average of four technical replicates, with error bars representing the SEM.

(F) Fraction of three 10-cm dishes in which each subclone was observed after 28 days of passaging.
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regulation of gene expression that maintains distinct cell states
across cell divisions.’® Chromatin openness, measurable
genome-wide with assay for transposase-accessible chromatin
using sequencing (ATAC-seq), integrates diverse epigenetic
mechanisms, including DNA methylation, histone modifications,
and transcription factor (TF)-driven feedback loops.”' Therefore,
we performed both RNA-seq and ATAC-seq on the met-high
(n =5) and met-low (n = 11) subclones to characterize their pre-in-
jection transcriptomes and chromatin landscapes, respectively.
There were 498 genes with increased expression in met-high sub-
clones and 434 with increased expression in met-low (Table S1),
and, out of the 176,964 total shared peaks, there were 2,725
(1.5%) with increased accessibility in met-high subclones and
5,720 (3.2%) with increased accessibility in met-low (Table S2), us-
ing an FDR cutoff of 0.05 in both cases. Reassuringly, differentially
accessible peaks had the expected signal shape across all the
tested subclones (Figure 2A) and a large majority (76%) overlap-
ped candidate cis-regulatory elements identified by the
Encyclopedia of DNA Elements (ENCODE) project in mouse tis-
sues (Figure S2). Furthermore, unsupervised hierarchical clus-
tering based on either differentially accessible peaks (Figure 2B)
or differentially expressed genes (Figure 2C) perfectly segregated
met-high subclones from met-low.

Next, we assigned ATAC-seq peaks to their nearest gene and
observed correlation of differentially accessible peaks with dif-
ferential gene expression (Figure 2D). 84% of differentially
accessible peaks were assigned to genes with unchanged
expression. This result is expected as some peaks may not regu-
late any genes, their target gene may be in a poised state, or their
target may not be the nearest gene. For differentially accessible
peaks linked to differentially expressed genes, the genes tended
to follow the expected pattern: 97 % of significant genes linked to
peaks with increased accessibility in met-high subclones had
increased expression in met-high subclones, and 91% of signif-
icant genes linked to peaks with increased accessibility in met-
low subclones had increased expression in met-low subclones.
We refer to the genes with differential expression concordant
with the differential accessibility of at least one assigned peak
as “met-high genes” (n = 207; Table S3) or “met-low genes”
(n = 182; Table S3) based on their increased expression in
met-high or met-low subclones, respectively. Met-high and
met-low genes define a cell-state axis separating PDAC sub-
clones with high and low metastatic-colonization potential.

To gain insights into the biological functions enabled by these
genes, we applied gene set enrichment analysis using the Gene
Ontology (GO)**° Biological Process and Kyoto Encyclopedia
of Genes and Genomes®* (KEGG) Pathway databases. The top
three out of the five total KEGG gene sets significantly enriched
among the met-high genes using an FDR cutoff of 0.05 were
related to infection or inflammation (e.g., “TNF signaling
pathway”; Figure 2E; Table S4). No GO terms were enriched
among the met-high genes. Among met-low genes, there were
50 GO pathways significantly enriched using an FDR cutoff of
0.05 (Figure 2F; Table S4). These pathways were divided by
manual curation into three classes: development (19/50; e.g.,
“muscle cell differentiation”), motility (16/50; e.g., “ameboidal-
type cell migration”), and Wnt (7/50; e.g., “Wnt signaling
pathway”). The remaining eight pathways could not be confi-
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dently assigned to one of these groups. No KEGG terms were
enriched among the met-low genes. Review of genes driving
enrichment of these pathways (Figure 2G) paints a picture of
complex differences between the met-high and met-low sub-
clones, with a clear signal toward activation of inflammation-
related genes in met-high and activation of genes specific to
adjacent developmental lineages, particularly pancreas neuroen-
docrine progenitors, in met-low. Interpretation of motility and Wnt
pathway enrichment in met-low subclones is more challenging,
as the individual genes involved do not point toward a coherent
phenotype. In line with the pathway-enrichment results, TF foot-
printing of ATAC-seq peaks”® revealed increased differential
binding scores for nuclear factor (NF)-kB, a master regulator of
inflammation, in met-high subclones (two-sided t test, adjusted
p < 2.2E-16 for NFKB2, NFKB1, REL, RELA, and RELB;
Figure 2H) and CDX2 and HOXA13, TFs involved in anterior-pos-
terior patterning during embryonic development, in met-low
(adjusted p < 2.2E—16 for both CDX2 and HOXA13; Figure 2H).

The metastatic-potential axis is independent of normal-
to-PDAC and classical-basal axes

To place the met-high and met-low subclones within the natural
history of PDAC development, we obtained ATAC-seq data
from normal pancreata, pre-neoplasia from KC mice (i.e., Pdx1-
Cre;LSL-Kras®'2P"*), pancreatitis, pre-neoplasia with pancrea-
titis, and primary PDAC from KPC mice (KPC-0) that Alonso-
Curbelo et al.”® generated in the same mouse strain as ours. All
raw data, including our met-high and met-low subclones, were
processed through a unified pipeline, followed by batch correc-
tion of KPC-1 and KPC-2 samples relative to KPC-0 using Com-
Bat.?” Principal-component analysis (PCA) recapitulated the
expected normal-to-PDAC trajectory along the first principal
component (Figure 3A). Met-high and met-low subclones did
not separate along the principal components (Figure 3A, inset).
To exclude batch correction artifacts, we projected uncorrected
subclone data onto PCA axes derived from the Alonso-Curbelo
dataset alone, which confirmed that met-high and met-low sub-
clones were indistinguishable along the progression trajectory
(Figure S3). These results suggest that the metastatic-potential
axis is orthogonal to the normal-to-PDAC axis.

To identify the molecular subtype of our captured subclones,
we classified each subclone as classical or basal utilizing
PurlST,? which generates a single-sample score representing
the probability of basal-state occupancy from bulk transcrip-
tomic data. PurlST categorized all met-high and met-low sub-
clones as classical (Figure 3B). Moreover, there was no difference
in expression of classical or basal marker genes® between met-
high and met-low subclones based on single-sample gene set
enrichment analysis (ssGSEA) scores or average expression
(two-sided Wilcoxon rank-sum tests; Figures 3C and 3D). These
results indicate that the metastatic-potential axis is also orthog-
onal to the classical-basal axis.

The metastatic-potential axis is conserved between
mouse and human PDAC

Capture and characterization of successful subclones in their
mid-metastatic state is not feasible in patients with PDAC; how-
ever, there is a wealth of data from primary and established
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(B and C) Heatmaps showing scaled, log-transformed normalized (B) accessibility or (C) expression for differentially accessible peaks or differentially expressed

genes, respectively (FDR < 0.05). Subclones clustered by Pearson correlation.

(D) Scatterplot showing the relationship between differential chromatin accessibility (x axis) and differential gene expression (y axis) for each significant peak.

Points are colored based on whether the nearest gene is differentially expressed.

(E and F) Dot plots of enriched pathways among met-low (E) or met-high (F) genes (FDR < 0.05).

(G) Heatmap of scaled, log-transformed, normalized expression for module genes across subclones.
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Figure 3. The metastatic-potential axis is independent of normal-to-PDAC and classical-basal axes

(A) PCA of normalized ATAC-seq signal across a consensus peak set.

(B) Predicted basal-like subtype probabilities based on PurlIST, with values <0.5 indicating likely classical subtype.

(C) Bar plots showing ssGSEA scores (left) and average transcripts per million (TPM) (right) for classical and basal marker genes across met-high and met-low
subclones. Bars, means + SEM. NS, not significant (p > 0.05; two-sided Wilcoxon rank-sum tests).

(D) Heatmap of scaled, log-transformed, normalized expression for the marker genes used in (C) across subclones.

metastatic tumors. To determine whether we can leverage these
data to assess our metastatic-potential axis in human PDAC, we
tested whether established metastases in the mouse model
display the met-high signature. We performed ATAC-seq before
and after liver colonization on a monoclonal met-high KPC cell
line (Figure S4A). The line was engineered to express GFP, which
enabled the purification of cancer cells from stromal cells in the
post-metastatic tumor via cell sorting. The ratio of mutant to
WT reads at the Kras and Trp53 loci in the sorted tumors showed
that they contained less than 5% stromal cell contamination
(Figure S4B). The majority of both the met-high (72.7%) and
met-low (74.2%) peaks were either unchanged or underwent
phenotype-concordant changes in accessibility during liver colo-
nization (e.g., met-high peaks becoming more open; Figure S4C),
suggesting that the open chromatin regions that allow a PDAC
subclone to successfully colonize the liver are largely maintained
during metastatic outgrowth.

With this information, we tested whether our gene-expression
signature is enhanced in human PDAC metastases compared to
primary tumors. To do so, we established MetScore, which uses
rank-based statistics®® to score a sample’s gene-expression
profile with respect to enrichment of met-high genes and deple-
tion of met-low genes (n = 202 and 174 human orthologs,
respectively; STAR Methods). We first focused on two cohorts
of human PDAC with gene expression from primary and meta-
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static tumors available: a cohort denoted as “PACA-US,” which
includes microarray data from primary and metastatic tumors
harvested from patients at time of autopsy as well as resected
primary tumors from living patients,® and the International Can-
cer Genome Consortium PACA-CA cohort, which includes RNA-
seq data from tumor biopsies harvested from patients with un-
treated locally advanced or metastatic PDAC enrolled in the
COMPASS?® and PanGen®° trials. MetScores were significantly
higher in metastases compared to primary tumors in both PACA-
US and PACA-CA cohorts (two-sided Wilcoxon rank-sum test,
p = 9.1E—6 for PACA-US and 0.040 for PACA-CA; Figure 4A).
To control for inter-patient variability, we performed a paired
intra-patient comparison in the PACA-US patients with both pri-
mary tumors and metastases at the time of sampling, which
showed increased MetScores in metastases (linear mixed-ef-
fects model, p = 4.5E—4; Figure 4B). Moreover, metastases in
PACA-US exhibited higher MetScores than primary tumors in
both classical and basal groups based on that study’s original la-
bels (two-sided Wilcoxon rank-sum test p = 4.1E—4 for classical
and 0.048 for basal; Figure 4C), suggesting that shared mecha-
nisms underlie metastatic colonization across subtypes.
Importantly, met-high and met-low genes accounted for only a
small fraction of the thousands of genes differentially expressed
between primary tumors and metastases (e.g., 1.1% and 1.2%
of metastasis- and primary-upregulated genes in PACA-US,
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Figure 4. The metastatic-potential axis is conserved between mouse and human PDAC
(A) Boxplots showing MetScore distributions in primary and metastatic tumors across PDAC cohorts. Points represent individual tumors. Two-sided Wilcoxon
rank-sum tests; *p < 0.05, **p < 0.001.

(legend continued on next page)
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respectively; Figure S5A), indicating that a direct primary versus
metastasis comparison would not have recovered the metasta-
tic-potential axis. Moreover, a MetScore derived solely from
transcriptomic differences between met-high and met-low sub-
clones (MetScore™A°") was less effective at distinguishing me-
tastases and primary tumors, demonstrating the added value of
integrating chromatin accessibility via RNA-seq and ATAC-seq
(Figure S5B). Together, these observations underscore that
multi-modal information from the mouse model was critical for
distilling the metastatic-potential gene-expression signal from
noise in human data.

To assess the relationship between cell-state heterogeneity
and metastatic potential within human PDAC at the single-cell
level, we leveraged a scRNA-seq atlas®' comprising 172 pri-
mary tumors and 25 metastases, the majority of which (21/25,
84%) were sampled from the liver. We applied MetScore to
each tumor cell (n = 214,629 from primary tumors; n = 28,542
from metastases; STAR Methods) and found that cells derived
from metastases showed higher scores (Hedges’ g = 1.25;
generalized linear model, p = 2.4E—8; Figure 4D). These results
demonstrate that the MetScore signature reflects tumor cell-
intrinsic features and not stromal contamination. We also calcu-
lated the single-cell basal versus classical commitment score
(scB/scC)® for each tumor cell in the atlas and found that
MetScore and scB/scC were strikingly uncorrelated (Pearson’s
r=0.005; Figure 4E), reaffirming that they are orthogonal biolog-
ical axes. Accordingly, while a logistic-regression model based
on MetScore accurately discriminated metastasis-derived cells
from primary tumor-derived cells upon 10-fold cross-validation
(one-sided binomial test, p <2.2E—16; precision-recall area un-
der the curve [PRAUC] = 0.394), a model based on scB/scC did
not perform any better than the no-information rate (PRAUC =
0.205; Figure 4F).

To further clarify the sources of heterogeneity within and
across tumors, we used uniform manifold approximation and
projection (UMAP) dimensionality reduction and Louvain clus-
tering, identifying seven distinct states within PDAC cells. Clus-
ters 5 and 6—composed entirely of metastasis-derived cells—
exhibited the highest MetScores but were divergent with respect
to scB/scC scores, with cluster 5 being more basal and cluster 6
more classical (Figure 4G), demonstrating that elevated meta-
static potential can occur independently of basal-state commit-
ment. Most primary tumor-derived clusters (2, 4, and 7) were
composed predominantly of cells with a low MetScore. Cluster
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1 was more heterogeneous, comprising both primary and meta-
static cells and a mixture of high- and low-MetScore states.
However, cluster 3—exclusively derived from primary tumors—
contained cells with high MetScores, raising the possibility that
it represents a subset of primary tumor cells poised for metas-
tasis. Collectively, these results demonstrate that MetScore cap-
tures a tumor cell-intrinsic transcriptomic signature underlying
metastatic potential that is conserved between mouse and hu-
man PDAC and independent of classical-basal subtype.

MetScore is prognostic for survival in human PDAC

Because metastasis is a major driver of mortality in localized
and locally advanced PDAC, we explored the relationship be-
tween primary tumor MetScore and overall survival in three co-
horts with matched survival and transcriptomic data: patients
with localized PDAC isolated from the previously analyzed
PACA-US cohort; patients with locally advanced PDAC isolated
from the previously analyzed PACA-CA cohort; and The Cancer
Genome Atlas’s (TCGA'’s) Pancreatic Adenocarcinoma (TCGA-
PAAD) cohort,®® which includes only patients with localized
PDAC. In each cohort, we compared the overall survival of pa-
tients with tumors in the top half of MetScores to those in the
bottom half (Figure S5C). High-MetScore patients had a signif-
icantly worse overall survival in all three cohorts (hazard ratio
[HR] for high MetScore = 1.6, 1.4, and 1.7; log rank test, p =
0.02, 0.04, and 0.01; for PACA-US, PACA-CA, and TCGA-
PAAD, respectively). In contrast to MetScore, MetScorefNAeny
was only prognostic in TCGA-PAAD (Figure S5D), further
highlighting the importance of incorporating chromatin accessi-
bility to improve classifier robustness and generalizability.
Multivariable Cox regression across the three cohorts showed
that both MetScore and classical-basal subtype retained inde-
pendent prognostic significance when included in the same
model (Figures 4H and 4l). Meta-analysis confirmed that high
MetScore (pooled HR = 1.51, 95% confidence interval [CI] =
1.20-1.89, p = 0.0005) and basal subtype (pooled HR = 1.73,
95% CIl = 1.31-2.29, p = 0.0002) were each associated with
significantly worse overall survival, with minimal between-study
heterogeneity. Individually, MetScore and classical-basal sub-
type each showed comparable prognostic discrimination (C-in-
dex 0.567 for MetScore and 0.566 for classical-basal subtype).
A combined model improved performance (C-index 0.590),
supporting that these features capture complementary, non-
redundant aspects of tumor biology. Together, these results

(B) Dot plot of MetScores for matched primary and metastatic tumors from rapid autopsy patients in the PACA-US cohort. Lines connect samples from the same

patient. Linear mixed-effects model; ***p < 0.001.
(C) As in (A) but stratified by molecular subtype as annotated in Moffitt et al.

(D) Violin plot showing MetScore distributions across tumor cells derived from primary tumors and metastases. Generalized linear model; ***p < 0.001.
(E) Scatterplot showing the relationship between MetScore and scB/scC across tumor cells. Gray line, linear regression fit. Pearson’s r indicated.

(F) Left: dot plot showing accuracy (median + interquartile range) across 10-fold cross-validation for logistic-regression models predicting donor type (primary vs.
metastasis) using either MetScore or scB/scC. One-sided one-sample proportion tests comparing model accuracy to the no-information rate; ***p < 0.001. NS,
not significant. Right: PR curves for models trained on MetScore or scB/scC.

(G) Top: UMAP plots of tumor cells colored as indicated. For MetScore and scB/scC, values above the 90th percentile and below the 10th percentile were
capped. Bottom: bar plot showing the proportion of primary and metastasis-derived cells within each cluster.

(H) Forest plot showing hazard ratios and 95% confidence intervals for high MetScore (top 50%) and basal subtype (PurlST predicted probability >0.5) with
respect to overall survival in Cox proportional hazards models adjusted for both variables. *p < 0.05, **p < 0.01, **p < 0.001.

(l) Kaplan-Meier curve showing overall survival of patients pooled from cohorts in (H) stratified by MetScore and classical-basal subtype. p value from log rank
test.
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demonstrate that primary tumor MetScore is associated with
worse overall survival and, when combined with classical-basal
subtype, allows for stratification of patients with PDAC with
significantly greater prognostic accuracy.

A shared cell-state axis underlies metastatic potential
across multiple human carcinoma subtypes

The steps of the metastatic cascade are similar for different
cancer subtypes; thus, we wondered whether the factors that
determine metastatic potential are conserved across subtypes.
MetScores were significantly higher in metastases compared
to primary tumors in all carcinoma cohorts we tested, including
two colon adenocarcinoma (COAD) cohorts (two-sided Wil-
coxon rank-sum test, p < 2.2E—16 for Colon-MCC*® and
CoIon-ConsortiumSS), two breast invasive ductal carcinoma
(BRCA) cohorts (p = 6.0E—5 for Breast-AURORA-US®** and
0.018 for Breast-MBC®®), and one prostate adenocarcinoma
(PRAD) cohort®® (p = 4.4E—8; Figure 5A). In contrast, we
observed the opposite trend in a melanoma cohort,®” where
primary tumors had significantly higher MetScores than metas-
tases (p = 7.9E—5; Figure 5B), suggesting that the metastatic-
potential axis defined by MetScore is not shared with this
non-epithelial malignancy.**

To test whether MetScore is relevant beyond liver and perito-
neal metastases, we stratified metastases by anatomic site in
cohorts with sufficient sample sizes. In both Colon-MCC and
Colon-Consortium, liver and lung metastases each individually
had significantly higher MetScores than primary tumors (MCC,
FDR < 2.2E—16 for both sites; Consortium, FDR < 2.2E—16 for
liver, FDR = 2.5E—12 for lung; Figure S6). In Breast-AURORA,
liver, lung, soft tissue, CNS, and bone metastases all individually
showed elevated MetScores (FDR = 2.2E-3, 6.4E—-3, 6.4E-3,
8.9E—3, and 0.047, respectively), although adrenal and lymph
node metastases were not significant. In the Prostate-Michigan
cohort, liver, lymph node, and soft tissue metastases each had
higher MetScores than primary tumors (FDR = 3.1E—4, 3.1E—4,
and 3.2E—4, respectively). Collectively, these findings indicate
that the metastatic-potential axis reflects a generalized advan-
tage in metastatic colonization across diverse anatomic sites,
not restricted to the liver or peritoneum.

While all carcinomas are epithelial in origin, they can exhibit mo-
lecular subtypes with differing degrees of epithelial versus mesen-
chymal features. To assess whether MetScore’s prognostic value
depends on epithelial identity, we stratified patients by subtype. In
mismatch repair proficient (0MMR) COAD, high primary tumor
MetScore was associated with worse overall survival in the
strongly epithelial CMS2 (“canonical”) subtype across both the
TCGA and Cartes d’ldentité des Tumeurs COAD (CIT-COAD)*®
cohorts (log rank test, p = 0.047 and 0.046, respectively;
Figure 5C), but not in the mesenchymal CMS4 subtype. The
“metabolic” CMS3 subtype, while epithelial, was the least repre-
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sented in both datasets, limiting statistical power to detect survival
differences. The CMS1 subtype was excluded due to its enrich-
ment for MMR-deficient tumors. Similarly, in the METABRIC®
breast BRCA cohort, MetScore was prognostic in the strongly
epithelial luminal A subtype (p = 0.047; Figure 5D), but not in
luminal B (less differentiated), basal-like (mesenchymal), or
HER2-enriched (variable epithelial-mesenchymal transition
[EMT] status) subtypes. Combined, these results indicate that
MetScore’s prognostic value is not uniform across all carcinoma
subtypes but is most apparent in those that retain strong epithelial
identity. Moreover, they reinforce that MetScore captures prog-
nostic information that is orthogonal to existing subtype-based
classification schemes.

Given MetScore’s ability to distinguish primary from metastatic
tumors and its prognostic relevance in COAD, we also asked
whether it could predict benefit from adjuvant therapy. We pooled
patients with stage Il/lll PMMR CMS2 COAD from the TCGA and
CIT cohorts and stratified them by MetScore and peri-operative
therapy status. Among patients with high MetScores, adjuvant
therapy was associated with significantly improved overall sur-
vival (log rank test, p = 0.014; Figure 5E), while no significant
benefit was observed in patients with low MetScores. Although
a formal interaction term in a Cox proportional hazards model
was not statistically significant (HR = 0.41, p = 0.27), this likely re-
flects limited power due to the small sample size (n = 170 patients)
and number of events (n = 37 deaths).

Together, these findings indicate that the cell-state axis
captured by MetScore is a recurrent feature of metastatic pro-
gression in several carcinoma subtypes—particularly those re-
taining epithelial identity —and may have clinical utility in strati-
fying patients for adjuvant therapy, especially in COAD.

Met-high PDAC cells enrich immune cells in their
microenvironments

Given the enrichment of inflammation-related genes in met-high
PDAC subclones, we hypothesized that one mechanism through
which met-high cells realize their advantage is by remodeling the
metastatic microenvironment. To test this, we calculated the
average neoplastic cell MetScore for every tumor in the human
PDAC scRNA-seq atlas and assessed correlation with the abun-
dance of stromal cell populations, as originally defined by the
study authors. Strikingly, all annotated immune cell abundances
were positively correlated with average tumor cell MetScore
(Spearman’s p = 0.59, 0.54, 0.53, 0.51, 0.41, 0.38, and 0.34;
FDR = 9.2E-16, 4.1E—-13, 8.2E-13, 1.1E—11, 7.2E-8,
1.2E-6, and 1.1E—5 for T cell and natural killer cell (T&NK cell),
cycling T&NK, myeloid, B cell, mast cell, plasma cell, and cycling
myeloid, respectively; Figure 6A; Table S5). Meanwhile, multiple
non-immune stromal cell abundances were negatively corre-
lated (p = —0.41, —0.30, and —0.28; FDR = 8.6E—8, 1.3E—4,
and 3.3E—4; for endocrine, cancer-associated fibroblast, and

Figure 5. A shared cell-state axis underlies metastatic potential across multiple human carcinoma subtypes
(A and B) Boxplots showing MetScore distributions in primary and metastatic tumors across the indicated carcinoma cohorts. Points represent individual tumors.

Two-sided Wilcoxon rank-sum tests; “o < 0.05, ***p < 0.001.

(C and D) Kaplan-Meier curves showing overall survival stratified by MetScore (high = top 50%, low = bottom 50%) in each cohort. p values from log rank tests.
(E) Kaplan-Meier curves for overall survival in patients with stage II/lll PMMR CMS2 COAD in the TCGA and CIT cohorts, stratified by receipt of post-operative
therapy (yes vs. no) within low-MetScore (bottom 50%; left) and high-MetScore (top 50%; right) groups. p values from log rank tests.
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Figure 6. Met-high PDAC cells enrich immune cells in their microenvironments
(A) Scatterplots showing the relationship between average neoplastic cell MetScore and the abundance of stromal populations across tumors in the human PDAC

scRNA-seq atlas.

(B) Correlation between bulk tumor MetScore and the immune-stromal score, calculated as the difference between scaled immune and stromal scores from the

ESTIMATE algorithm.
(C) The same analysis restricted to metastases.

(D) Scatterplot showing correlation between single-cell MetScore in tumor-enriched epithelial cells in the PDAC scRNA-seq atlas and a proliferation score.
(E) UMAP plots of tumor cells colored as indicated. For MetScore and MKI67, values above the 90th percentile and below the 10th percentile were capped.
(F) Scatterplot showing correlation between single-cell MetScore in tumor-enriched epithelial cells in the PDAC scRNA-seq atlas and a survival score.

In (A-D) and (F), linear regression lines are shown, with Spearman’s rho and p values (FDR adjusted for A-C).

endothelial, respectively; no significant correlation for acinar
cells or pericytes).

To validate these findings in additional patient cohorts, we de-
convolved bulk transcriptomic data in the PACA-US, PACA-CA,
and TCGA-PAAD cohorts into tumor, immune, and non-immune
stromal contributions using estimation of stromal and immune
cells in malignant tumor tissues using expression data (ESTI-
MATE).*? In all three datasets, the difference between immune
and non-immune stromal Z scores was positively correlated

with MetScore (Spearman’s p = 0.43, 0.34, 0.41; p = 2.0E-10,
2.4E-8, and 4.3E—7; for PACA-US, PACA-CA, and TCGA-
PAAD, respectively; Figure 6B). Importantly, this trend was
observed in metastases, significantly for PACA-US (p = 0.42,
p = 9.0E—4; Figure 6C) and exhibiting a strong trend for PACA-
CA (p =0.29, p = 0.27), likely due to the limited number of metas-
tases (n = 16) in this cohort versus PACA-US (n = 61).

Together, these findings demonstrate a consistent link between
met-high PDAC cells and immune cell-enriched, non-immune
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Figure 7. c-Fos is a positive functional mediator of PDAC liver colonization

(A) Experimental design for (B).

(B) Volcano plot showing mean log, fold change in shRNA abundance between primary tumor and liver metastasis conditions (averaged across all shRNAs per
gene) and —log4o weighted combined p value from a linear model. Sample sizes: primary (n = 6 tumors, 6 mice); liver metastasis (n = 36 tumors, 4 mice).
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stromal cell-depleted microenvironments. This association could
reflect two possibilities: either met-high cells remodel their sur-
roundings to favor immune accumulation or they arise within
pre-existing immune-enriched niches. The recurrence of this
pattern in metastases, where new microenvironments must be es-
tablished, supports remodeling.

While our results point to microenvironmental remodeling as a
key cancer cell-extrinsic mechanism through which met-high
cells achieve their metastatic advantage, we also found evidence
for complementary cancer cell-intrinsic mechanisms. Specif-
ically, MetScore was strongly correlated with a conserved
gene-expression signature that predicts cell and lineage-specific
differences in growth rate”’ (Spearman’s p = 0.76, p <2.2E—16;
Figure 6D). Mapping MKI67 expression across the single-cell
UMAP (Figure 6E) revealed groups of MKI67* cells within
MetScore-high regions — particularly clusters 5 and 6 (exclusively
metastasis-derived) and cluster 1 (mixed primary and metasta-
tic). In contrast, MetScore-high cells in cluster 3 (exclusively pri-
mary tumor derived) were MKI67~, indicating that high MetScore
is not synonymous with proliferation. A distinct group of MKI67*
cells was also present within a MetScore-low, basal-differenti-
ated region in cluster 2. These results suggest that met-high
PDAC cells—despite comparable intrinsic proliferative potential
invitro—are more likely to be in an active proliferative state in vivo,
particularly following colonization, but that elevated MetScore is
not required for robust proliferation. In addition, MetScore was
correlated with a gene signature associated with cellular survival
(“GOBP_NEGATIVE_REGULATION_OF_APOPTOTIC_SIGNA-
LING_PATHWAY”; p 0.73, p <2.2E—16; Figure 6F).

Taken together, these findings support a model in which met-
high cells realize their advantage through a combination of can-
cer cell-intrinsic traits, including enhanced proliferation and sur-
vival, and cancer cell-extrinsic processes such as remodeling of
the target-site microenvironment.

c-Fos is a positive functional mediator of PDAC liver
colonization

To identify features of the met-high state that may underlie re-
modeling of the metastatic microenvironment observed in hu-
man PDAC, we performed a short hairpin RNA (shRNA) screen
in the liver-colonization context (Figure 7A), targeting inflamma-
tion-related met-high genes (l/1a, 1/18r1, Nos2, Fos, and [/23a),
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other met-high genes (Tmem40, Myo1b, and Notch4), and a
few non-met-high genes from the mouse genome to serve as
controls (STAR Methods). The results showed that cells carrying
shRNAs targeting Fos and //23a were significantly depleted in
liver metastases relative to primary tumors (linear model,
weighted combined p = 3.9E—3 for Fos and 0.011 for //23a;
Figure 7B), identifying these inflammation-related genes as novel
functional enablers of liver colonization. In addition, shRNAs tar-
geting the met-high genes Myo1b, which encodes an atypical
myosin, and Tmem40, which encodes a transmembrane protein
with poorly characterized function, were similarly significantly
depleted in liver metastases relative to primary tumors (weighted
combined p = 6.3E—3 for Myo1b and 0.020 for Tmem4o0;
Figure 7B), suggesting that diverse pathways active within the
met-high state contribute to metastatic competence. These find-
ings confirm that met-high genes are enriched for functional reg-
ulators of PDAC liver colonization and nominate multiple ave-
nues for therapeutic intervention.

We focused on our top hit, Fos, encoding the TF c-Fos, for
further validation. Using the KPC-2_HiB subclone, which origi-
nates from a different tumor than KPC-1_Hi2 used in the screen,
we generated cell lines harboring shRNAs targeting Fos or a con-
trol non-targeting shRNA and validated knockdown using RT-
gPCR (Figure 7C). We then performed splenic injections using
equal mixtures of Fos-targeting/non-targeting shRNA-harboring
cells, harvested the resulting liver metastases, and sequenced
the shRNA amplicon. Cells carrying shRNAs targeting Fos were
depleted in liver metastases relative to the starting population in
a manner correlated to the degree of knockdown (Figure 7D).
This depletion was significant for shFos #1 (one-sided Wilcoxon
signed-rank test, p = 0.04) and exhibited a strong trend for shFos
#2 that did not reach statistical significance (p = 0.11), likely due to
the modest degree of knockdown (30%) with this shRNA. Impor-
tantly, Fos knockdown did not affect in vitro proliferation
(Figure 7E), suggesting its role in liver metastasis is mediated
through mechanisms specifically promoting colonization rather
than a generic effect on cellular fitness. Supporting this, FOS
expression was uncorrelated with the proliferation gene signature
among tumor-enriched epithelial cells in the human PDAC scRNA-
seq atlas (Spearman’s p = 0.10; Figure 7F).

To identify the downstream programs influenced by c-Fos, we
performed RNA-seq on the two Fos-knockdown and control

(C) RT-gPCR quantification of Fos mRNA in KPC-2_HiB cells expressing shRNAs targeting Fos or a non-targeting control. Rps29, housekeeping gene. Bars,
mean + SEM from three technical replicates. One-sided Wilcoxon rank-sum test; *p < 0.05.

(D) Histograms showing the distribution of shFos representation (shFos/(shFos + shControl)) in liver metastases following intrasplenic injection of mixed pop-
ulations. Dashed lines indicate pre-injection (blue) and post-injection (red) medians. Left, shFos #1 (n = 32 tumors, 3 mice); right, shFos #2 (n = 56 tumors, 5 mice).
p values from one-sided one-sample Wilcoxon signed-rank tests.

(E) In vitro proliferation of KPC-2_HiB cells expressing Fos-targeting or control shRNAs. Points represent mean + SEM from technical replicates (n = 4). Linear
mixed-effects model; NS, not significant.

(F) Scatterplot depicting the relationship between FOS expression and a proliferation gene signature across tumor cells in the human PDAC scRNA-seq atlas. A
regression line and Spearman’s rho (0.10) are shown, indicating negligible correlation.

(G) Volcano plot of differential expression between Fos-knockdown and control conditions in KPC-2_HiB cells. Two independent Fos-targeting shRNAs and one
non-targeting control shRNA were used, each with three technical replicates. Genes colored by significance (red, upregulated; blue, downregulated; black,
unchanged) with FDR < 0.05.

(H) Heatmap of scaled, log-transformed, normalized expression for genes highlighted in (G) across technical replicates.

(I) Kaplan-Meier curve for overall survival stratified by ILTA expression (high = top 50%; low = bottom 50%) in the PACA-US cohort. p value from log rank test.
(J and K) CUT&RUN and ATAC-seq tracks in KPC-2_HiB cells at the //1a (J) and //7rn (K) loci. c-Fos CUT&RUN had two technical replicates; no-antibody CU-
T&RUN and ATAC-seq had one.
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KPC-2_HiB celllines. Consistent with its role as a pleiotropic TF, c-
Fos depletion altered the expression of nhumerous genes: 802
were significantly upregulated, while 1,116 were downregulated
(FDR cutoff <0.05; Table S6), spanning diverse biological
processes. This outcome suggests that c-Fos may facilitate met-
astatic colonization through multiple parallel mechanisms.
Regardless, its potential effect on the immune composition of
the metastatic niche can be clearly identified: /71, 1134, and ll1a
were consistently downregulated across independent shRNAs
(log2FC = —1.3, —0.28, and —0.24; FDR < 2.2E—16, 0.015, and
0.047, respectively; Figures 7G and 7H), whereas Cxcl5, Il1rn,
1118bp, and 1133 were upregulated (log2FC = 0.93, 0.72, 0.52,
and 0.18; FDR = 2.4E-7, 2.4E—14, 0.026, and 0.013, respec-
tively). While the fold changes of some individual secreted factors
are modest, the collective perturbation of the secretome is sub-
stantial and likely to exert strong effects on the tumor microenvi-
ronment. For example, upregulation of //1a, encoding IL-1a,
together with downregulation of //7rn, encoding the IL-1 receptor
antagonist (IL-1RA), would be expected to cooperate in
enhancing IL-1 signaling. Consistent with this conclusion, we
found that high IL1A expression in PDAC primary tumors was
associated with worse overall survival in the PACA-US cohort
(Figure 71), in agreement with prior reports.*?

We next used CUT&RUN (Cleavage Under Targets & Release
Using Nuclease) profiling to map c-Fos binding genome-wide in
KPC-2_HiB cells, identifying 18,477 binding sites (Table S7). As-
signing each site to its nearest gene nominated 9,492 putative
direct transcriptional targets. c-Fos can function as either a tran-
scriptional activator or repressor.*® By integrating CUT&RUN
with RNA-seq from Fos-knockdown cells, we identified candidate
genes under direct c-Fos transcriptional activation (n = 803) or
repression (n = 526), enabling mechanistic assignment of these
changes. Among the secreted factors discussed above, //34 and
lI1a appeared to be directly activated, whereas Cxcl5, Il1rn, and
1133 were directly repressed. For instance, strong c-Fos occu-
pancy was detected at two open chromatin regions located
~7.7 and ~20.9 kb upstream of the l/7a transcription start site
(TSS; Figure 7J), consistent with distal enhancers and supporting
a direct regulatory role. At the //7rn locus, two prominent binding
sites were observed (Figure 7K), one at the promoter and the other
at a distal enhancer ~3.5 kb upstream of the TSS, consistent with
direct transcriptional repression. These results suggest that much
of the c-Fos effects on the secreted factors that would reprogram
the metastatic niche are mediated by its direct binding as opposed
to its indirect effects on other factors, positioning it as a critical up-
stream node for therapeutic targeting.

As a whole, these findings establish c-Fos as a reproducible
functional driver of PDAC liver colonization, with consistent ef-
fects across independent subclones. They nominate c-Fos as
a candidate therapeutic target and support a model in which
c-Fos promotes colonization through a complex network of
downstream targets, including multiple cytokines and cytokine
antagonists.

DISCUSSION

In this study, we used DNA barcoding to uniquely label heteroge-
neous subclones in mouse primary PDAC tumors and measure
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their performance in liver-colonization assays, identifying a set
of genes enriched in subclones with high metastatic potential
and another set depleted in these subclones, defining a novel
metastatic-potential axis. A prevailing theory of PDAC develop-
ment positions highly metastatic subclones as being the most
advanced along a normal-to-PDAC trajectory.** Our results do
not support this model. Instead, we propose that the met-high
and met-low states reflect a divergence at the endpoint of
PDAC’s developmental trajectory, with each subclone type
achieving high fitness in the primary tumor but with met-high
subclones uniquely equipped for navigating the post-extravasa-
tion steps of the metastasis cascade.

To assess metastatic potential in humans, we developed
MetScore, a rank-based single-sample scoring metric derived
from enrichment and depletion patterns of the met-high and
met-low gene sets in transcriptomic data. Human PDAC metas-
tases consistently exhibited higher MetScores than primary tu-
mors, and high primary tumor MetScores were associated with
worse overall survival independently of classical-basal subtype,
suggesting the metastatic-potential axis is conserved between
mouse and human PDAC. An unexpected finding was the
conservation of the metastatic-potential axis among several
diverse human carcinoma subtypes, particularly those that
retain epithelial identity, such as CMS2 COAD. This may present
an opportunity to more accurately stratify patients with stage Il
and Il CMS2 COAD. Currently, decisions regarding whether
to treat with adjuvant therapy and its duration in these patients
are guided by clinical risk factors alone. Encouragingly, we
observed a strong signal toward MetScore being predictive of
adjuvant therapy benefit in stage II/ll pMMR CMS2 COAD.
Larger retrospective studies are required to validate the rela-
tionship between MetScore and adjuvant therapy benefit,
explore interactions with clinical risk factors, and choose cutoffs
for risk categories.

In addition to prognostic value, MetScore provided an open-
ing to assess the mechanistic drivers of PDAC liver coloniza-
tion. Across multiple patient cohorts, PDAC cells with a high
MetScore occupied microenvironments enriched for immune
cells and depleted for non-immune stromal cells. As this
pattern was observed in metastases in addition to primary tu-
mors, it suggests active remodeling by met-high cells rather
than passive adaptation to pre-existing niches. This remodeling
is likely mediated, at least in part, by tumor cell-derived cyto-
kines and cytokine antagonists transcriptionally tuned by c-
Fos. This positions c-Fos as a potential therapeutic target,
acting as a critical upstream node that coordinates multiple ef-
fectors. c-Fos inhibitors are already in clinical use for other in-
dications®® but have not been evaluated in PDAC. While prior
studies have implicated c-Fos in PDAC pathogenesis,*®*” our
work uniquely delineates its specific contribution to liver coloni-
zation. Future studies should define the downstream pathways
by which c-Fos drives metastatic outgrowth and assess the
therapeutic efficacy of c-Fos inhibition in preclinical PDAC
models.

Overall, this work substantially expands the understanding of
transcriptional heterogeneity in PDAC and identifies a metasta-
tic-potential axis conserved across several carcinoma sub-
types. It establishes MetScore as a robust biomarker capable
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of prognostication and potentially predicting adjuvant treatment
benefit. Moreover, it nominates c-Fos and other novel targets
as actionable mediators of metastatic colonization, laying the
groundwork for future therapeutic development aimed at inter-
cepting metastasis.

Limitations of the study

While this study provides a framework for understanding met-
astatic-colonization potential in carcinomas, several technical
and conceptual limitations should be acknowledged. First, all
in vivo experiments were conducted in a single PDAC model
(KPC) and exclusively in female mice, and our clonal analyses
were based on a limited number of subclones. Nonetheless,
the robust performance of MetScore across multiple patient
datasets supports the broader relevance of transcriptional
and chromatin-accessibility programs identified here. Second,
while RNA-seq and ATAC-seq enabled characterization of
transcriptomic and chromatin-accessibility differences be-
tween met-high and met-low subclones, these methods do
not capture all layers of gene regulation. We did not assess
DNA methylation, chromatin topology, or post-transcriptional
mechanisms that may contribute to stable metastatic pheno-
types. Third, our analysis of metastatic potential across human
carcinoma subtypes was not exhaustive. While conservation of
the metastatic-potential axis was clear across tested carci-
nomas, other carcinoma subtypes may deviate from this
pattern. Similarly, we examined only one non-epithelial malig-
nancy (melanoma), and future studies should investigate met-
astatic determinants in other non-epithelial solid tumors such
as sarcomas. Fourth, the stromal populations we analyzed
were defined broadly, yet each comprises multiple heteroge-
neous sub-states. Further work is needed to delineate the spe-
cific stromal subpopulations that define the met-high niche
with greater granularity. Finally, our functional studies identi-
fying c-Fos as a positive mediator of liver colonization utilized
shRNAs, which may have off-target effects. However, the use
of multiple independent shRNAs targeting each gene mitigated
the risk of off-target effects generating misleading conclu-
sions. While our data implicate c-Fos-driven cytokines and
cytokine antagonists in microenvironmental remodeling, a
direct causal link between these secreted factors and the
establishment of a pro-metastatic niche remains to be estab-
lished. In addition, genes enriched in met-low subclones,
including neuroendocrine, Wnt signaling, and motility-associ-
ated programs, were not functionally evaluated here; whether
they actively suppress colonization or are passive markers re-
mains unknown.
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REAGENT or RESOURCE SOURCE IDENTIFIER
Antibodies

c-Fos Active Motif 61421; RRID: AB_2793628
Chemicals, peptides, and recombinant proteins

RPMI 1640 Medium Gibco 11875093
Fetal Bovine Serum Thermo Fisher Scientific 16140071
Penicillin-Streptomycin Gibco 15140122
Non-essential Amino Acids Gibco 11140050
Sodium Pyruvate Gibco 11360070
L-glutamine Gibco 25030081
DMEM Gibco 11995065
Basic Nucleofector® Kit for Primary Lonza VPI-1005
Mammalian Epithelial Cells

Puromycin InvivoGen ant-pr-1
DMSO Sigma-Aldrich D2650
Propidium iodide Invitrogen 00-6990-50
NEBNext Library Quant Kit for lllumina New England Biolabs E7630

MiSeq Reagent Kit v2 lllumina MS-102-2002
SYBR Gold Thermo Fisher Scientific S11494
TRIzol Thermo Fisher Scientific 15596026
Chloroform Sigma-Aldrich C2432
NEBNext Poly(A) mRNA Magnetic Isolation Module New England Biolabs E7490

xGen RNA Library Prep Kit IDT 10009814
Lipofectamine 2000 Thermo Fisher Scientific 11668027
Neomycin Corning 61-234-RF
Tumor Dissociation Kit, mouse Miltenyi 130-096-730
ProtoScript Il First Strand cDNA Synthesis Kit New England Biolabs E6560S
Forget-Me-Not EvaGreen gPCR Master Mix Biotium 31045
Critical commercial assays

e-Myco Mycoplasma PCR Detection Kit Bulldog Bio 2523348
DNeasy Blood and Tissue Kit Qiagen 69504

DNA Clean & Concentrator-5 Kit Zymo D4004

Qubit dsDNA HS Assay Kit Thermo Fisher Scientific Q32851
CyQUANT Cell Proliferation Assay Thermo Fisher Scientific C7026

RNA Clean & Concentrator-5 kit Zymo R1013
Deposited data

All RNA-seq, ATAC-seq, and CUT&RUN NCBI SRA BioProject #PRJNA960830
data generated in this study

ATAC-seq data from mouse pancreas NCBI SRA BioProject #PRJNA548087

pre-neoplasia and PDAC
Mouse cCREs

Non-redundant vertebrate transcription
factor binding profiles

PACA-CA**%¢
PACA-US®
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SCREEN: Search Candidate cis-Regulatory
Elements by ENCODE Registry of
cCREs (screen.encodeproject.org)

JASPAR (https://jaspar.elixir.no/downloads/)

pdacR*®
pdacR

Version 3

2022 Version

ICGC PACA-CA, 2016 —RNAseq
Moffit, 2015 —MA

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER
TCGA-PAAD* UCSC Xena Browser*? TCGA-PAAD
Colon-MCC** Gene Expression Omnibus®® GSE131418
Colon-Consortium®® Gene Expression Omnibus GSE131418
Breast-AURORA** Gene Expression Omnibus GSE193103

Breast-MBC®'

cBioPortal®* >

The Metastatic Breast
Cancer Project

Prostate-Michigan®® Gene Expression Omnibus GSE35988

TCGA-SKCM*” UCSC Xena Browser TCGA-SKCM

TCGA-COAD®® UCSC Xena Browser TCGA-COAD

CIT-COAD*® Gene Expression Omnibus GSE39582

METABRIC*® cBioPortal METABRIC

PDAC scRNA-seq atlas®’ Zenodo 14199536

Experimental models: Cell lines

KPC-1 Dr. Lei Zhang KPC-O

KPC-2 Dr. Lei Zhang KPC-508F

HEK293T ATCC CRL-3216

Experimental models: Organisms/strains

C57BL/6J The Jackson Laboratory 000664

Oligonucleotides

PCR primers IDT See Table S8

shRNA ultramers IDT See Table S9

xGen UDI indexing primers IDT 10005922

Recombinant DNA

PB-U6insert Addgene 104536

PB-U6insert-EF1puro Addgene 104537

Super PiggyBac Transposase Expression Vector System Biosciences PB210PA-1

pLenti CMV GFP Neo Addgene 17447

pMD2.G Addgene 12259

pCMV delta R8.2 Addgene 12263

SGEP Addgene 111170

Software and algorithms

MARC1 Pipeline Kalhor Laboratory https://github.com/
Kalhor-Lab/MARC1-Pipeline

ATAC-seq Pipeline ENCODE https://github.com/ENCODE-DCC/
atac-seq-pipeline

Cutadapt Bioconda Version 1.9.1

Bowtie2 Bioconda Version 2.2.6 or 2.4.4 as
noted in method details

Samtools htslib.org Version 1.7 or 1.15.1 as
noted in method details

Picard Broad Institute Version 1.126

(https://broadinstitute.github.io/picard/)

MACS2 PyPI (https://pypi.org/project/MACS2/) Version 2.1.0 or 2.2.7.1 as
noted in method details

DiffBind Bioconductor Version 3.14.1

ComBat sva package (Bioconductor) Version 3.52.0

R programming language The R Project for Statistical Computing Version 4.4.3

RStudio posit Version 2025.05.1 + 513

deepTools Bioconda Version 3.5.5

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

ChlIPseeker Bioconductor Version 1.40.1 or 1.42.1 as

noted in method details

TOBIAS Bioconda Version 0.15.1

Trimmomatic The Usadel Lab (http://www.usadellab. Version 0.39
org/cms/?page=trimmomatic)

Salmon COMBINE lab (https://github.com/ Version 1.10.1
COMBINE-lab/salmon/releases)

Tximeta Bioconductor Version 1.22.1

DESeq2 Bioconductor Version 1.44.0

apegim Bioconductor Version 1.28.0

PurlST Rashid Lab N/A
(https://github.com/naimurashid/PurlST)

GSVA Bioconductor Version 2.0.7

singscore Bioconductor Version 1.24.0

limma Bioconductor Version 3.62.2

CMScaller Oncosyne Version 2.0.1
(https://github.com/peterawe/CMScaller)

survival CRAN Version 3.5-8 or 3.8-3 as

noted in method details

ggforitfy CRAN Version 0.4.17

meta CRAN Version 8.0-2

Seurat CRAN Version 5.2.0

caret CRAN Version 6.0-94

yardstick CRAN Version 1.3.2

ESTIMATE MD Anderson Cancer Center Version 1.0.13
(https://bioinformatics.mdanderson.org/
estimate/rpackage.html)

Bowtie Bioconda Version 1.3.0

bestNormalize CRAN Version 1.9.1

FastQC Babraham Institute Version 0.12.1
(https://www.bioinformatics.
babraham.ac.uk/projects/fastqc/)

Trim Galore Babraham Institute Version 0.6.6
(https://www.bioinformatics.
babraham.ac.uk/projects/trim_galore/)

Gviz Bioconductor Version 1.50.0

ComplexHeatmap Bioconductor Version 2.20.0

ggplot2 CRAN Version 3.5.1

EXPERIMENTAL MODEL AND STUDY PARTICIPANTS

Cell lines

The KPC-1 and KPC-2 cell lines were a gift from Dr. Lei Zheng. They were generated from primary tumors of KPC mice'” (i.e., Pdx1-
Cre;LSL-Kras®"2P/*: Trp53R172H4) as described previously.'”'® Cell lines were tested for mycoplasma contamination using a
PCR-based kit (Bulldog Bio) and were found to be mycoplasma negative. Their identity was confirmed by genotyping the Pdx1-
Cre, LSL-Kras®"2P"* and Trp5377 72+ |oci (Figure S1). Both KPC-1 and KPC-2 were determined to be female via PCR amplification
of the Smcx and Smcy genomic loci (data not shown). KPC cells were cultured in RPMI 1640 medium supplemented with FBS (10%),
penicillin-streptomycin (100 U/mL), non-essential amino acids (1X), sodium pyruvate (1 mM), and L-glutamine (2 mM). HEK293T cells
were purchased from ATCC and were cultured in DMEM supplemented with FBS (10%) and penicillin-streptomycin (100 U/mL).
HEK293T cells are female.
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Mouse models

All animal procedures were approved by Johns Hopkins University’s Animal Care and Use Committee (ACUC) and conformed to the
relevant local and national regulatory standards. C57BL/6J mice were obtained from The Jackson Laboratory (strain #000664).
Eight-week-old female mice were used. Splenic, intraperitoneal, and orthotopic injections were performed as described previ-
ously. 2131856 Eor splenic and intraperitoneal injections, 500,000 cells were injected. For orthotopic injections, 50,000 cells were
injected. In all cases, the injected animals were allowed to incubate for 4 weeks prior to sacrifice. The one exception was the pre-
and post-liver colonization ATAC-seq experiment, where we performed splenic injections using 1M cells and sacrificed the mice after
2 weeks. Tumors were harvested in all cases with microdissection using a dissection microscope (ZEISS SteREO Discovery.V8).

METHOD DETAILS

Barcoding

The DNA barcodes utilized in this study were based on a previously published homing guide RNA (hgRNA) library.'*'® Two transpos-
able plasmid libraries with random bases were mixed. The first library (Ins27) contains two stretches of degenerate bases, one 15
bases in length (“LeftBarcode”) and the other 10 bases in length (“RightBarcode”). These two stretches are separated by a constant
94 base region. It was constructed from the Addgene #104536 plasmid as described previously.'* The second library (Ins25-puro) is
very similar. It contains two stretches of degenerate bases, one 19 bases in length (“LeftBarcode”) and the other 10 bases in length
(“RightBarcode”), that are separated by a constant 94 base region; however, it also contains a puromycin resistance marker ex-
pressed by the EF-1a promoter. It was constructed from the Addgene #104537 plasmid as described previously.'* The inserts in
both plasmid libraries are flanked by PiggyBac inverted repeats, which enable their integration into the genome using the
PiggyBac transposase. The constructs express the barcodes in small RNA form from a U6 promoter. The universal amplification
primers for these barcodes allow reliable identification in sequencing based upon either the forward or reverse reads.

Nucleofection was used to introduce the barcode libraries into KPC cells (Lonza Basic Nucleofector Kit for Primary Mammalian
Epithelial Cells and Nucleofector Il Device using program T-020). Barcode libraries were co-transfected with Super PiggyBac Trans-
posase Expression Vector to facilitate integration of the barcode construct into the genome. Two strategies were utilized to
encourage a large number of barcode insertions per cell. The first strategy was co-transfection of the Ins21 and Ins25-puro libraries
in a 19:1 ratio. Under these conditions, only cells with a large number of integrations would be likely to have integrated a puromycin
resistance gene-containing construct, allowing us to eliminate cells with few integrations during antibiotic selection. The second
strategy was using a transposase:transposon ratio of 1:10 rather than the more typically used 1:3. Because PiggyBac can both inte-
grate and excise transposons, having less PiggyBac in the cells reduces the likelihood that barcode constructs integrated into the
genome will be removed during the initial transposition process.

Following barcode integration, the cells underwent puromycin selection for seven days. Puromycin-resistant cells were then sorted
as single cells into wells of a 96-well plate using a Sony Sorter SH800. Propidium iodide was used to exclude dead cells. The resulting
colonies were expanded over the course of several weeks while remaining under puromycin selection and then cryopreserved in fetal
bovine serum with 10% DMSO.

Barcode sequencing - Library preparation and sequencing

Genomic DNA was isolated from cells or mouse tumors using a DNeasy Blood and Tissue kit as per the manufacturer’s instructions.
The hgRNA locus was amplified and sequenced using next-generation sequencing as described previously.'” Briefly, the hgRNA
locus was amplified using primers with overhangs containing primer binding sites for lllumina sequencing by synthesis
(i.e., PCR1). Then, a second PCR amplification was performed using primers with overhangs containing either P5 or P7 to facilitate
binding to the lllumina flow cell and a random DNA sequence (i.e., the i5 or i7 index sequence) to facilitate pooling and deconvolution
of multiple samples in the same sequencing run (i.e., PCR2). Deviating from the published protocol, a set of four forward and four
reverse degenerate PCR1 primers was used to increase library diversity, and custom PCR2 indexing primers were used to allow
for pooling of a large number of samples (Table S8). The resulting libraries were then pooled, purified using a DNA Clean and
Concentrator-5 kit, and quantified using either a Qubit dsDNA HS Assay Kit or an NEBNext Library Quant Kit for lllumina. The final
libraries were sequenced using an lllumina MiSeq device and MiSeq Reagent Kit v2.

Barcode sequencing - data processing and analysis

Raw sequencing data were processed on a high-performance computing cluster (The Advanced Research Computing at Hopkins
[ARCH] “Rockfish” cluster [https://www.arch.jhu.edu/about-arch/]) using the previously published MARC1 pipeline.'® Briefly, this
pipeline decompresses the raw sequencing data, compiles Read 1 and Read 2 sequences from each sample to a list of paired
LeftBarcodes and RightBarcodes, sequentially corrects for sequencing errors in the LeftBarcode and RightBarcode regions, and
then compiles complete lists of LeftBarcode-RightBarcode counts for each sample.

To characterize the barcodes specific to each subclone, local Python scripts were used to first filter out unique LeftBarcode-
RightBarcode pairs with fewer than 3-4 reads, depending on sequencing depth. Then the RightBarcode sequences specific to
that subclone were defined by filtering out RightBarcodes whose reads made up less than 1% of the total reads. Finally, each
RightBarcode’s LeftBarcode mate was defined as the most abundant LeftBarcode out of those paired with that RightBarcode.
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To characterize the subclones present in a tumor or in vitro culture, local Python scripts were used to first filter out unique
LeftBarcode-RightBarcode pairs with fewer than three reads. Then, the identifier-spacer pairs found in that tumor were cross-refer-
enced against LeftBarcode-RightBarcode pairs specific to each subclone included in the experiment (i.e., either all KPC-1-derived
subclones or all KPC-2-derived subclones). Since all LeftBarcode-RightBarcode pairs were unique to their assigned subclone, the
presence of a single LeftBarcode-RightBarcode pair was sufficient to indicate the presence of its assigned subclone in the tumor.
Using this strategy, each tumor was noted for the presence or absence of each subclone included in the experiment.

Gross pathology and histology
Photographs of mouse tumors were taken using an iPhone 13.

Mouse tumors were fixed in 10% neutral buffered formalin for 48 h, after which they were processed into paraffin-embedded tissue
blocks as described previously.® They were then sectioned and stained with hematoxylin and eosin (H&E) as described previously.*°
Light micrographs of the H&E-stained sections were captured using a Zeiss Axio Vert.A1 microscope.

Proliferation assays

Cells were seeded into wells of a 96-well plate (5,000 or 10,000 cells, depending on the experiment). Relative cell number at each time
point (24, 48, and 72 h) was quantified using a CyQUANT Cell Proliferation Assay, for cells in culture, as per the manufacturer’s in-
structions. The resulting cell counts were normalized to the 24-h values. For the Fos-knockdown experiments, pP-values were calcu-
lated using a linear mixed-effects model testing the interaction between time and shRNA (Fos-targeting vs. control) with respect to
cell number.

Genotyping

Genomic DNA was isolated from each KPC-1 and KPC-2 derived monoclonal line using a DNeasy Blood and Tissue kit as per the
manufacturer’s instructions. Genotyping PCR reactions were performed according to The Jackson Laboratory for Pdx1-Cre,”’
and the Tyler Jacks Laboratory for Ls/-Kras®'?P>® and for Ls/-Trp537"7".5° PCR products were separated on a 1% agarose gel
run at 8V/cm for one hour and visualized with SYBR Gold reagent as per the manufacturer’'s recommendations.

Bulk RNA-seq - Library preparation
For transcriptomic profiling of met-high and met-low monoclonal KPC cell lines and for characterization of gene expression changes
downstream of Fos knockdown, cells grown in vitro were lysed in TRIzol reagent, followed by chloroform extraction and cleanup us-
ing the RNA Clean and Concentrator-5 Kit according to the manufacturer’s instructions.

For the met-high vs. met-low comparison, mRNA was enriched with the NEBNext Poly(A) mRNA Magnetic Isolation Module. Li-
braries were prepared using the xGen RNA Library Prep Kit and xGen UDI indexing primers.

For Fos knockdown samples, total RNA was shipped to Azenta Life Sciences, where libraries were prepared using their standard
poly(A)-selected RNA-seq protocol.

All libraries were sequenced on an lllumina NovaSeq 6000 platform with 150 bp paired-end reads.

Bulk RNA-seq - data processing and analysis

Raw RNA-seq data were processed on a high-performance computing cluster (the Rockfish cluster described in Barcode
sequencing - data processing and analysis). Adapter sequences were trimmed using Trimmomatic®® 0.39. Transcripts were
then quantified using Salmon®' 1.10.1 in the mapping-based mode with GC bias correction. The M33 (GRCm39) transcript se-
quences from GENCODE®? were used as the reference transcriptome.

Then, locally in R, transcript quantifications were imported and summarized to the gene level using Tximeta® 1.22.1.

For the metastasis-high vs. metastasis-low comparison, genes with fewer than 50 reads across all KPC samples were first
excluded. Then, the generalized linear model functionality of DESeq2 1.44.0 was utilized to identify differentially expressed genes
between metastasis-high and metastasis-low subclones while controlling for parental group status by modeling the metastatic po-
tential (i.e., high vs. low) as a fixed effect and parental group (i.e., KPC-1 vs. KPC-2) as a random effect (design: ~parental_group +
metastatic_potential). An FDR cutoff of 0.05 was used.

For the Fos-knockdown versus control comparison, genes with fewer than 50 reads across all samples were excluded. Differential
expression analysis was performed using DESeq2 (v1.44.0) with a design formula ~ Knockdown, pooling replicates from both
shRNAs. Log, fold changes were shrunken using apeglm (v1.28.0), and significance was determined at an FDR <0.05. For secreted
factors highlighted in the main text, we additionally verified that expression changes were consistent across both independent
shRNAs (Figure 7H).

To classify the KPC subclones as being either classical or basal subtype, the PurlST classifier® was used to calculate the probability
of basal subtype classification for each sample. This was performed in R by following the publisher’s instructions. The human clas-
sical and basal subtype-defining genes used by the classifier were converted to their mouse orthologs using the Ensembl®* BioMart
web portal. Bulk RNA-seq data from each subclone were used as input to the classifier, specifically gene TPM.

To compare expression of classical and basal marker genes between met-high and met-low subclones, single sample gene set
enrichment analysis (ssGSEA) was performed using the GSVA package® version 2.0.7 using log,(x+1) TPM as input. Classical
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and basal marker genes were defined as the top 25 gene exemplars for the subtype factors from Moffitt et al., 2015° restricted to
those with well-characterized mouse orthologs. The final gene sets used are listed in Figure 3D. Differences in ssGSEA enrichment
score and average TPM between met-high and met-low subclones were assessed using two-sided Wilcoxon rank-sum tests.

Enrichment of GO?*?® and KEGG?* (Kyoto Encyclopedia of Genes and Genomes) pathways amongst metastasis-high and metas-
tasis-low genes was assessed in R using the enrichGo () and enrichKEGG () functions in clusterProfiler®® 4.12.0. An FDR cutoff of
0.05 was used.

ATAC-seq - Library preparation
ATAC-seq libraries were generated as described previously.®” Libraries were then pooled and sequenced on a NovaSeq 6000 (met-
high and met-low subclones) or NovaSeq X Plus (pre- and post-colonization experiment) using 100 bp paired-end reads.

ATAC-seq - data processing and analysis

Raw sequencing data were processed on a high-performance computing cluster (the Rockfish cluster described in Barcode
sequencing - data processing and analysis) using the ENCODE project’s publicly available ATAC-seq pipeline®® with default set-
tings. Briefly, adapters were trimmed using cutadapt 1.9.1, timmed reads were aligned to the mm10 genome using Bowtie2°° 2.2.6,
low-quality, mitochondrial, and duplicate reads were filtered out using Samtools’® 1.7 with Picard”' 1.126 to mark duplicates, and
peaks were called using Macs2’? 2.1.0. For two samples, KPC-2_LoC and KPC-2_HiA, two independent libraries were prepared
from separate aliquots of cryopreserved cells (i.e., technical replicates). Raw sequencing data from technical replicates were pooled
before processing.

ATAC-seq data from normal, pre-neoplasia, pancreatitis, pre-neoplasia+pancreatitis, and primary PDAC generated by Alonso-
Curbelo and colleagues®® were downloaded from NCBI (BioProject #PRJNA548087) and processed in the same manner.

Locally in R, a consensus peak set was generated by merging overlapping peaks from the individual samples’ peak sets using
DiffBind”® 3.14.1. Then, a normalized count matrix, i.e., the number of reads aligning to each peak, normalized by the total reads
in peaks for that sample, across all samples, was generated using DiffBind.

For analyses that included both the metastasis-high and metastasis-low subclones generated in this study, as well as the normal,
pre-neoplasia, pancreatitis, pre-neoplasia+pancreatitis, and primary PDAC generated by Alonso-Curbelo and colleagues,?® the
normalized count matrix was batch corrected using ComBat”” from the sva package (version 3.52.0). A parametric batch correction
was performed with sample type (i.e., normal, pancreatitis, pre-neoplasia, pre-neoplasia+pancreatitis, PDAC) included as a covariate
and with the Alonso-Curbelo et al. samples defined as the reference batch.

Principal component analysis was performed using the log,(x+1) transformed and scaled normalized count matrix using base R’s
prcomp () function.

The generalized linear model functionality of DESeq2” was utilized to identify differentially accessible peaks between metastasis-
high and metastasis-low subclones while controlling for parental group status by modeling the metastatic potential (i.e., high vs. low)
as a fixed effect and parental group (i.e., KPC-1 vs. KPC-2) as a random effect (design: ~parental_group + metastatic_potential). In
the pre-versus post-colonization experiment, DESeq2 was used to perform a straightforward comparison between the two condi-
tions (design: ~condition). An FDR cutoff of 0.05 was used in both cases.

To visualize ATAC-seq signal profiles for peaks with increased accessibility in metastasis-high subclones and separately for peaks
with increased accessibility in metastasis-low subclones across all of the tested subclones, a matrix containing scores for the
genomic regions of interest was first generated using the plotProfile () function of DiffBind 3.14.1, and then plots were generated
using the plotProfile command of deepTools’® 3.5.5.

Significantly differentially accessible peaks were assigned to their nearest genes using the annotatePeak () function from
ChlPseeker’® 1.40.0 with the mm10 genome as the reference genome. We excluded 124 peaks assigned to predicted genes lacking
an Ensembl ID and 2,640 peaks linked to genes that were lowly expressed in both met-high and met-low subclones.

Peaks were assessed for overlap with candidate cis-regulatory elements (cCREs). All mouse cCREs (mm10 genome) identified by
the ENCODE project were downloaded from SCREEN: Search Candidate cis-Regulatory Elements by ENCODE Registry of cCREs
V3.”” Overlaps were broken down by category. For visualization purposes, “pELS” and “dELS” categories were merged into
“Enhancer”; “PLS” and “CA-H3K4me3” categories were merged into “Promoter”; and “CA”, “CA-TF”, and “TF” were merged
into “Candidate RE, NOS”.

Transcription factor footprinting
Non-redundant vertebrate transcription factor binding profiles, i.e., motifs, were downloaded from the JASPAR database.”® Locally
in R, this set of motifs was then filtered to exclude motifs corresponding to non-expressed or lowly expressed transcription factors in
the KPC cells. Non-expressed genes were defined as those having fewer than 50 total reads across all samples in our RNA-seq data-
set, and lowly expressed genes were defined as those whose statistical significance was not calculated by DESeg2 due to low
expression in our differential expression analysis.

Then, on a high-performance computing cluster (the Rockfish cluster described in Barcode sequencing - data processing and
analysis), aligned ATAC-seq reads for every KPC sample were downsampled to the coverage of the least covered sample using the
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view command in samtools 1.15.1. Then, aligned ATAC-seq reads were merged amongst the metastasis-high samples and sepa-
rately amongst the metastasis-low samples using the merge command in samtools 1.15.1.

Finally, on the Rockfish cluster, transcription factor footprinting was performed by inputting the filtered motifs (n = 511), the metas-
tasis-high and metastasis-low merged aligned ATAC-seq reads, and the complete consensus peak set for all KPC samples (n =
176,964 peaks) to TOBIAS®® 0.15.1. The ATACorrect command was used to correct the ATAC-seq signal in the merged samples
for Tn5 insertion bias. Then, the ScoreBigwig command was used to calculate a continuous footprint score across peaks in the
consensus peak set based on the depletion of signal and the general accessibility of the nearby region. Finally, the BINDetect com-
mand was used to (1) identify putative TF binding sites within peak regions by matching the known motifs to the peak region DNA
sequences using MOODS’® (MOtif Occurrence Detection Suite); (2) classify each putative TF binding site as being either bound
or unbound in each condition (i.e., metastasis-high and metastasis-low) based on a footprint score cutoff; (3) calculate the log,
fold change in footprint score between the two conditions for each binding site; (4) calculate a differential binding score (DBS) for
each motif representing the global distribution of log, fold changes across binding sites for that motif; and (5) calculate a p-value
for each motif by comparing its DBS to 100 DBSs generated from randomly sampled log, fold changes from the background
distribution.

Locally in R, differential binding score p-values were adjusted for multiple hypothesis testing using a Bonferroni adjustment. An
adjusted p-value cutoff of 0.05 was used.

Engineering KPC-2_HiA cells to express GFP

pLenti CMV GFP Neo was packaged into lentiviral particles via co-transfection with VSV.G and gag/pol plasmids into HEK293T cells
using Lipofectamine 2000 Transfection Reagent. Lentiviral particles were concentrated via precipitation with lentiviral concentration
solution (4X stock is 40% [W/V] PEG-8000 and 1.2M NaCl in PBS [pH 7]). KPC-2_HiA cells were transduced in the presence of poly-
brene using a low multiplicity of infection. Transduced cells were selected via exposure to medium containing neomycin for 7 days.

Isolation of neoplastic cells from liver metastases

Tumor-laden mouse livers were dissociated into single cells using a Tumor Dissociation Kit, mouse as per the manufacturer’s instruc-
tions using the 37C_m_TDK_2 program. GFP-positive cells were isolated using a Sony Sorter SH800S. Dead cells were excluded
using propidium iodide.

Scoring human tumor samples for MetScore and assigning molecular subtype
Bulk transcriptomic data (normalized microarray signals or RNA-seq counts) from human primary tumors and metastases were ob-
tained (see key resources table).

For microarray datasets with multiple probes per gene (Colon-MCC, Colon-Consortium, Prostate-Michigan, CIT-COAD, METABRIC),
the probe with the highest average signal was retained. In RNA-seq datasets containing multiple entries per gene (e.g., Breast-MBC),
counts were summed across entries to yield a single value per gene.

Dataset-specific filtering was applied where necessary
® TCGA-PAAD: Neuroendocrine tumors excluded.
® TCGA-COAD and CIT-COAD: Excluded mismatch repair-deficient or unannotated tumors.
® METABRIC: Restricted to patients with invasive ductal carcinoma.

Lowly expressed genes were excluded (average FPKM <1 for TCGA datasets; average TPM <1 for PACA-CA, Breast-AURORA,
and Breast-MBC).

Mouse met-high (n = 207) and met-low (n = 182) genes were converted to human orthologs using Ensembl®* BioMart, yielding 202
met-high and 174 met-low genes. The same procedure was used to generate the broader MetScore™N°" gene sets (433 high,
403 low).

MetScore or MetScore™™A°"Y were calculated using the singscore®® R package (v1.24.0). Genes were ranked with rankGenes (),
followed by scoring via singscore () using human met-high genes as the up-set and met-low genes as the down-set. Only genes
detected after dataset-specific filtering were included in scoring.

Comparisons of MetScore or MetScore™™A°"Y petween primary tumors and metastases were performed using two-sided Wil-
coxon rank-sum tests. For PACA-US rapid autopsy cases with matched primary and metastatic samples, a linear mixed-effects
model (anatomic site as fixed effect, patient as random effect) was applied.

Differential expression analyses in PACA-US and PACA-CA were conducted using the limma R package (v3.62.2) with Benjamini—
Hochberg correction (FDR <0.05).

For subtype analyses, PACA-US patients were stratified by classical-basal subtype per original annotations, and MetScore com-
parisons were performed within subtypes using Wilcoxon rank-sum tests.

For survival analyses, localized or locally advanced primary tumors from PACA-US, PACA-CA, TCGA-PAAD, TCGA-COAD, CIT-
COAD, and METABRIC were stratified into high and low MetScore groups (top vs. bottom 50%). For TCGA-COAD and CIT-COAD,
patients were further stratified by CMS subtype using the CMScaller package®’ (version 2.0.1). For METABRIC, patients were further
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stratified by PAM50 subtype using the authors’ original annotations. Kaplan—-Meier curves were generated using the survival (version
3.5-8) and ggfortify (version 0.4.17) packages; significance was assessed via log rank tests (p-value <0.05).

To assess independent prognostic value, PurlST was applied for classical-basal subtype assignment in PDAC cohorts. Multivari-
able Cox regression was performed using coxph () (survival version 3.8-3). Pooled hazard ratios were calculated using a fixed-ef-
fects meta-analysis model based on inverse-variance weighting of log-transformed hazard ratios using the meta R package (version
8.0-2).

To assess predictive power for adjuvant chemotherapy benefit, patients with stage Il and Il pMMR CMS2 were pooled from the
TCGA-COAD and CIT-COAD cohorts. Multivariable Cox regression was performed using coxph () (survival version 3.8-3) with
MetScore, overall survival, and adjuvant therapy (yes vs. no) as covariates.

Single-cell RNA-seq analysis

Pre-normalised UMI counts together with cell-level metadata for the human PDAC single-cell atlas®' were downloaded. All analyses
were carried out in R 4.4.3 on the Rockfish high-performance computing cluster (described under Barcode sequencing — data pro-
cessing and analysis). The expression matrix was loaded as a Seurat v5.2.0 object.

Tumor-enriched epithelial cells were identified as follows. Cells labelled by the original authors as “DUCTAL” or “CYCLING
DUCTAL” were isolated. Variable features were re-identified (vst, 2,000 genes), the data were re-scaled, principal-component anal-
ysis (RunPCa), neighbor graph construction (FindNeighbors, dims = 1-10), Louvain clustering (FindClusters, resolution =
0.011), and UMAP visualization (RunuUMAP, dims = 1-10) were repeated. This yielded four clusters, hereafter termed Ductal 1-4.

Cluster Ductal 2 was highly enriched for cells derived from healthy donors or adjacent normal tissue and was inferred to represent
non-malignant epithelium. We therefore removed (i) all Ductal 2 cells and (ii) any remaining healthy-donor/adjacent-normal cells, leav-
ing 243,171 tumor-enriched epithelial cells. These were reclustered with the same pipeline (resolution = 0.05), producing the seven
tumor clusters discussed in the manuscript.

For each tumor-enriched epithelial cell, we calculated (i) MetScore (method described in Scoring human tumor samples for
MetScore and assigning molecular subtype, above), (ii) the previously published scBasal/scClassical commitment score (scB/
scC),? and (iii) a gene signature that predicts cell and lineage-specific differences in growth rate” using Seurat’s AddModuleScore.
Violins and UMAP overlays were generated with FeaturePlot/V1inPlot; expression values were winsorised at the 10th and 90th
percentiles for display only. Differences between primary tumor- and metastasis-derived tumor cells were calculated using a gener-
alized linear model with donor type as a fixed effect and donor as a random effect. Cell-wise MetScore x scB/scC correlation and
FOS x proliferation used Pearson’s r.

Binary logistic-regression models were fitted with caret v6.0-94 (method = “glm”, family = binomial, classProbs = TRUE, savePre-
dictions = “final”). Cells were stratified by donor type (primary tumor or metastasis); 10-fold cross-validation (CV) was applied. The
no-information rate (NIR, 88.3% primary tumor-derived) served as a naive baseline. For each model, the proportion of correct CV
predictions was compared with the NIR by a one-sided binomial test (confusionMatrix, caret). Precision-recall curves and
AUPRC were calculated with yardstick v1.3.2 (event_level = “second”), using the out-of-fold predicted probabilities; baseline pre-
cision (random classifier) is shown as a dashed line at 0.117 (metastatic prevalence).

Deconvolution of human tumor bulk transcriptomic profiles using ESTIMATE

To assess stromal composition across tumors, we applied the ESTIMATE algorithm*° (R package estimate version 1.0.13) to normal-
ized expression matrices. For each dataset, we reformatted the expression matrix to include HGNC gene symbols as the first column
and sample identifiers as column headers, and exported the matrix as a tab-delimited text file. Common genes were filtered using
filterCommonGenes (), and stromal, immune, and ESTIMATE scores were computed using estimateScore () with the appro-
priate platform specification (e.g., * ‘affymetrix’"’).

To quantify the relative balance between immune and non-immune stromal content, we computed z-scores for both the ImmuneScore
and StromalScore across all tumors in a given cohort, then subtracted the StromalScore Z score from the ImmuneScore Z score to
generate an Immune - Stroma (z-score). This composite metric captures the relative enrichment of immune versus fibrovascular
stromal components in a normalized, cohort-wide manner. Higher values indicate a microenvironment skewed toward immune cell con-
tent relative to non-immune stroma (e.g., cancer-associated fibroblasts and endothelial cells).

Pooled shRNA screen and targeted Fos knockdown
We designed three miR-30-based shRNAs targeting each gene included in the screen, as well as three negative control shRNAs tar-
geting luciferase, which the KPC cells do not express. The majority of the shRNA sequences used were designed using the SplashRNA
algorithm.®" For genes for which the SplashRNA algorithm did not produce at least three shRNA sequences with SplashRNA scores
greater than one, the remaining sequences were selected from the shRNAs in Table 3 in Fellmann et al., 2013.%? Al shRNA sequences
used in this study can be found in Table S9.

shRNAs were cloned in a pooled fashion or individually into the SGEP lentiviral expression vector as described previously.® The
resulting shRNA library or single shRNA-containing plasmids were packaged into lentiviral particles as described above
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(see engineering KPC-2_HiA cells to express GFP). KPC-1_Hi2 or KPC-2_HiB cells were transduced in the presence of polybrene
using a low multiplicity of infection (< 0.3). GFP-positive cells were isolated using a Sony Sorter SH800S. Dead cells were excluded
using propidium iodide.

Genomic DNA was isolated from a day zero pre-injection sample and mouse tumors using a DNeasy Blood and Tissue Kit accord-
ing to the manufacturer’s instructions. When tumors were too large to be digested and loaded onto a single spin column, they were
subdivided into smaller chunks, each of which was digested and library prepped separately. Independent draws of the day zero pre-
injection sample were library prepped separately (n = 3 for the pooled screen and n = 4 for the Fos knockdown experiments). The
shRNA locus was amplified using primers flanking the entire shRNA sequence with overhangs containing primer binding sites for
lllumina sequencing by synthesis (i.e., PCR1; Table S8). Then, a second PCR amplification was performed using primers with over-
hangs containing either P5 or P7 to facilitate binding to the lllumina flow cell and a random DNA sequence (i.e., the i5 or i7 index
sequence) to facilitate pooling and deconvolution of multiple samples in the same sequencing run (i.e., PCR2; Table S8). The resulting
libraries were then pooled, purified using a DNA Clean and Concentrator-5 Kit, and quantified using a NEBNext Library Quant Kit for
lllumina. The final libraries were sequenced using an lllumina MiSeq device and MiSeq Reagent Kit v2.

First, reads from each sample were mapped to the expected shRNA sequences present in the library. To accomplish this, Bowtie®*
1.3.0 was used to align the region of Read1 expected to correspond to the variable region of the shRNA-guide stem against a refer-
ence composed of the variable regions present in the library. One base pair mismatches were allowed to account for sequencing
error. For the single knockdown experiments, gaps one nucleotide in length were also allowed. This produced a list of counts for
each shRNA in the experiment for each sample. This analysis was performed on a high-performance computing cluster (the Rockfish
cluster described in Barcode sequencing — data processing and analysis).

For the Fos knockdown experiments, samples with fewer than 100 total reads aligning to expected shRNA sequences were
excluded. Then, for each sample, the Fos-targeting fraction was calculated as shFos reads/(shFos reads + shControl reads). The
mean fraction in day zero replicates served as the expected value. A one-sided Wilcoxon signed-rank test evaluated whether
post-injection fractions were significantly lower (depletion of shFos).

For the pooled screen, shRNA counts for the three-day zero pre-injection samples were combined. shRNAs whose abundance in
the pooled day zero pre-injection sample was less than 0.25% were excluded from further analysis steps. Tumors with fewer than 100
shRNA counts were also excluded from further analysis steps.

The tumor samples were then normalized by dividing counts for each shRNA by the total shRNA counts for that respective sample.
Normalized shRNA counts in samples derived from the same tumor (i.e., cases in which the tumor was too large to be digested and
loaded onto a single spin column) were combined, and the resulting pooled samples were re-normalized by dividing the normalized
counts for each shRNA by the total normalized counts for that pooled sample.

Enrichment/depletion of shRNAs between liver metastases and primary tumors was evaluated as described previously.® Briefly,
normalized shRNA counts were subjected to linear regression modeling with the sample type (i.e., primary tumor vs. liver metastasis)
as a covariate using the 1m () function in R. The resulting coefficients, standard errors (SE), t-values, and pp-values were extracted
for each shRNA. To account for variability and normalize the data, /og, fold changes of the non-targeting control shRNAs were
normalized using the bestNormalize package (version 1.9.1) to create a transformation object. This transformation was then applied
to the log, fold changes of targeting shRNAs to calculate z-scores.

For weighted combined p-value calculation, z-scores were divided by the SE, and weights were defined as the inverse of the SE
squared. Subsequently, shRNAs targeting the same gene were aggregated, and the adjusted z-scores were summed and normalized
by the square root of the sum of the weights to generate combined z-scores for each gene. The combined z-scores were then used to
calculate p-values by applying a two-tailed normal distribution test (2 *pnorm (-abs (combined.z))). A p-value cutoff of 0.05
was used.

Quantification of Fos knockdown by qRT-PCR

RNA was extracted using a TRizol-chloroform extraction followed by column cleanup using an RNA Clean and Concentrator-5 Kit as
per the manufacturer’s instructions. RNA was then reverse transcribed to cDNA using a ProtoScript Il First Strand cDNA Synthesis Kit
as per the manufacturer’s instructions. Quantitative PCR was performed using Forget-Me-Not EvaGreen gPCR Master Mix on a
QuantStudio 3 device (Thermo Fisher). See Table S8 for primer sequences. Data was analyzed using the standard curve method.
Rps29 was used as a housekeeping gene. Differences between experimental and control groups were calculated using one-sided
Wilcoxon rank-sum tests.

Characterization of genome-wide c-Fos binding sites using CUT&RUN

Cryopreserved cells were shipped to Active Motif (Carlsbad, CA) for CUT&RUN. Briefly, nuclei were immobilized on Concanavalin
A-coated magnetic beads and incubated overnight at 4°C with 1 pL (~1 pg) of c-Fos antibody. After washing to remove excess
antibody, pMNase was added and activated with CaCl, for 2 h at 4°C to digest DNA fragments at antibody-bound sites. Released
fragments were purified using DNA columns, and sequencing libraries were prepared with the NEBNext DNA Library Prep Kit (New
England BiolLabs) according to the manufacturer’s instructions. Libraries were sequenced on an lllumina NextSeq 2000 platform
(38 bp paired-end reads).
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Basic data processing steps were performed by Active Motif. Sequencing reads were processed using the nf-core/cutandrun
pipeline. Quality metrics were assessed with FastQC (version 0.12.1). Adapter trimming was performed with Trim Galore (version
0.6.6). Trimmed reads were aligned to the mm10 reference genome with Bowtie2 (version 2.4.4), and SAM files were converted to
BAM format using Samtools. Duplicate reads were removed with Picard MarkDuplicates, mitochondrial reads were excluded,
and alignments overlapping ENCODE blacklisted regions were discarded. Peaks were called with MACS2 (version 2.2.7.1). The frac-
tion of reads in peaks (FRiP) was calculated as a measure of dataset quality. BigWig files were generated with deepTools using counts
per million (CPM) normalization for visualization.

Downstream analysis was performed locally in R. Consensus peaks were generated from technical replicates using the dba . count
function of DiffBind (version 3.16.0) with summits extended to 150 bp. Peaks were assigned to their nearest gene using the
annotatePeaks () function in ChiPseeker (version 1.42.1).

Signal tracks were generated using the Gviz package (version 1.50.0) in R.

Data visualization and schematics

Heatmaps were generated in R using ComplexHeatmap®® 2.20.0. Unless otherwise noted, all other plots were generated in R using
ggplot2®” 3.5.1. Schematics were created using BioRender.com.

QUANTIFICATION AND STATISTICAL ANALYSIS

The nature and number of experimental replicates utilized are described in the respective figure legends. The quantitative and sta-

tistical methods utilized, including filtering criteria, statistical tests used, and significance cutoffs, can be found in method details (in
full) and the figure legends (in brief).
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