
Article

A cell-state axis underlying colonization in 
carcinomas with implications for metastasis risk 
prediction and interception

Graphical abstract

Highlights

• Tracking barcoded cells in immunocompetent mice isolates 

highly metastatic clones

• Multiomic analysis identifies novel metastatic-potential axis 

captured in MetScore

• MetScore is orthogonal to previous stratifications and 

implicates immune remodeling

• MetScore offers prognostic and predictive value across 

human carcinomas

Authors

Jesse S. Handler, Zijie Li,

Rachel K. Dveirin, ..., Hani Goodarzi,

Elana J. Fertig, Reza Kalhor

Correspondence

jesse.stone.handler@emory.edu (J.S.H.), 
kalhor@jhu.edu (R.K.)

In brief

Handler et al. track PDAC subclones in 

metastatic competition under 

immunosurveillance using barcodes, 

identifying a metastatic-potential cell-

state axis orthogonal to normal-to-PDAC 

and classical-basal axes. Scoring 

samples on this axis using MetScore, 

they show it is conserved across human 

carcinomas and offers prognostic and 

predictive value in patients.

Handler et al., 2025, Cell Reports 44, 116701

December 23, 2025 © 2025 The Authors. Published by Elsevier Inc. 
https://doi.org/10.1016/j.celrep.2025.116701 ll

mailto:jesse.stone.handler@emory.edu
mailto:kalhor@jhu.edu
https://doi.org/10.1016/j.celrep.2025.116701
http://crossmark.crossref.org/dialog/?doi=10.1016/j.celrep.2025.116701&domain=pdf


Article

A cell-state axis underlying colonization
in carcinomas with implications for metastasis 
risk prediction and interception

Jesse S. Handler, 1,2,3,11, * Zijie Li, 1,2,4 Rachel K. Dveirin, 1,2 Jessica D. Lin, 1,2,5 Weixiang Fang, 1,2 Shihan Wu, 1,2 

James E. Forsmo, 1,2 Hani Goodarzi, 6,7 Elana J. Fertig, 1,3,8,9 and Reza Kalhor 1,2,5,10,12, *
1 Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
2 Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
3 Sidney Kimmel Comprehensive Cancer Center, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
4 Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
5 Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
6 Department of Biochemistry & Biophysics and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, 

San Francisco, CA, USA
7 Arc Institute, Palo Alto, CA, USA
8 Convergence Institute, Johns Hopkins Data Science and AI Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, 

USA
9 Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, MD, USA
10 Department of Molecular Biology and Genetics, Department of Medicine, and Department of Genetic Medicine, Johns Hopkins University 

School of Medicine, Baltimore, MD, USA
11 Present address: Department of Hematology and Medical Oncology, Winship Cancer Institute at Emory University School of Medicine, 
Atlanta, GA, USA
12 Lead contact

*Correspondence: jesse.stone.handler@emory.edu (J.S.H.), kalhor@jhu.edu (R.K.)

https://doi.org/10.1016/j.celrep.2025.116701

SUMMARY

Metastasis to the liver drives mortality in pancreatic ductal adenocarcinoma (PDAC), yet mechanisms of colo-

nization remain unclear. Using genomic barcoding, we developed a clonal competition model under immune 
surveillance, isolating murine PDAC subclones with high or low liver-colonization potential. Combined tran-

scriptome and chromatin-accessibility analyses revealed a distinct ‘‘metastatic-potential axis,’’ separate 
from the normal-to-PDAC and classical-basal axes. We established ‘‘MetScore’’ as a biomarker of this 
axis. MetScore distinguishes metastases from primary PDAC tumors in patients, predicts outcomes beyond 
classical-basal classifications, and generalizes across carcinoma subtypes, suggesting conserved coloniza-

tion mechanisms. High-MetScore PDAC cells preferentially occupy immune cell-enriched niches, suggesting 
they remodel the metastatic microenvironment. Functional screening identified c-Fos as a positive mediator 
of colonization and a candidate anti-metastatic target. Collectively, we identify a cell-state axis underpinning 
PDAC liver colonization, introduce MetScore as a broadly applicable biomarker, and nominate actionable tar-

gets for peri-operative therapeutic intervention.

INTRODUCTION

The majority of patients with localized pancreatic ductal adeno-

carcinoma (PDAC) experience distant recurrence following sur-

gical resection, 1 a uniformly fatal event. Liver is the most com-

mon metastatic site, and hepatic spread is associated with a 

particularly poor prognosis. 2 Current adjuvant therapies provide 

only modest benefit 3 and fail to prevent recurrence in many pa-

tients. These challenges highlight a critical unmet need: under-

standing the molecular mechanisms that enable PDAC liver 

metastasis to guide the development of novel therapeutic strate-

gies aimed at its interception.

Addressing these challenges requires a more nuanced under-

standing of PDAC’s molecular heterogeneity. PDAC has been 

divided into two major transcriptional subtypes, 4–6 termed ‘‘clas-

sical’’ and ‘‘basal,’’ which subsequent single-cell RNA-sequencing 

(scRNA-seq) analyses 7,8 showed to exist as a spectrum—or axis— 

within individual tumors. This framework has proved clinically use-

ful: a classical-basal scoring system called purity independent 

subtyping of tumors (PurIST) 9 is predictive of response to chemo-

therapy, and a clinical trial is underway to evaluate whether PurIST-

guided adjuvant therapy choice improves patient outcomes 

(ClinicalTrials.gov: NCT06483555). While there is increased preva-

lence of liver metastases in patients with the basal subtype, 10 liver

Cell Reports 44, 116701, December 23, 2025 © 2025 The Authors. Published by Elsevier Inc. 1
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

ll
OPEN ACCESS

http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:jesse.stone.handler@emory.edu
mailto:kalhor@jhu.edu
https://doi.org/10.1016/j.celrep.2025.116701
http://crossmark.crossref.org/dialog/?doi=10.1016/j.celrep.2025.116701&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


metastasis is frequent in both subtypes, and the specific transcrip-

tomic features determining metastatic potential are poorly 

understood.

Metastasis encompasses multiple stages, including local inva-

sion, extravasation into the circulation, survival as circulating 

cells, extravasation at distant sites, navigating initial interactions 

with the local microenvironment (including resident immune 

cells), and proliferation to form an overt macrometastasis. In the 

adjuvant setting (where the primary tumor has been removed), 

only the post-extravasation stages, collectively referred to here 

as ‘‘colonization,’’ remain therapeutically actionable. However, 

dissecting the molecular features that endow tumor cells with 

liver-colonization potential is challenging, as direct comparison 

of metastases with matched primary tumors would fail to 

deconvolve features that allowed the seeding subclone(s) to colo-

nize from those that evolved during adaptation to the liver 

microenvironment.

To address this gap, we leveraged genomic barcoding to 

develop a clonal competition model of PDAC liver colonization 

under immune surveillance in mice. Using this model, we identi-

fied subclones with high or low colonization. Multi-omic compar-

ison of these subclones revealed a set of genes with positive or 

negative association with colonization, establishing a novel met-

astatic-potential axis orthogonal to both the normal-to-PDAC 

and classical-basal axes. We subsequently demonstrated that 

this metastatic-potential axis, encapsulated in a single-sample 

scoring metric called ‘‘MetScore,’’ is conserved between mouse 

and human PDAC and across multiple other human carcinomas. 

We characterized the microenvironments of highly and poorly 

metastatic PDAC cells in human tumors and found that the 

former is enriched for immune cells and depleted for non-im-

mune stromal cells. Finally, we performed a functional screen 

of MetScore genes associated with immune response, revealing 

c-Fos as a positive mediator of liver colonization. Overall, our 

study identifies a cell-state axis underlying metastatic potential 

in multiple carcinomas and sets the stage for developing both 

diagnostic tools for assessing metastasis risk and novel thera-

pies targeting the colonization steps of the metastatic cascade.

RESULTS

Isolation of primary PDAC subclones with high and low 

liver-colonization potential

To characterize the molecular determinants of liver-colonization 

potential within PDAC tumors, we obtained cells isolated from 

the primary tumors of two independent KPC mice 11–13 (i.e., 

Pdx1-Cre;LSL-Kras G12D/+ ;Trp53 R172H/+ ), which we denote here 

as KPC-1 and KPC-2. We barcoded each line by transposition 

of randomized DNA sequences 14,15 (Figure 1A). This strategy re-

sults in each cell receiving a unique combination of sequences 

that can act as a barcode for tracking it. From barcoded mix-

tures, we sorted single cells and expanded them to generate 

monoclonal lines. We obtained 10 barcoded subclones from 

KPC-1 and seven from KPC-2 and identified the barcode in 

each subclone using high-throughput sequencing.

We next quantified the liver-colonization potential of the iso-

lated subclones. Equal mixtures of all KPC-1 or KPC-2 sub-

clones were transplanted into immunocompetent syngeneic

C57BL/6 mice via splenic injection, a standard approach for 

modeling metastasis to the liver that includes only the post-

extravasation steps 12,13 (Figure 1B). After 4 weeks, liver metas-

tases were harvested and barcode sequencing was performed 

to identify contributing subclones. The majority (80%) of metas-

tases were polyclonal, with a plurality being biclonal (Figure 1C), 

consistent with prior reports. 16,17 To quantify colonization po-

tential while minimizing confounding by post-seeding prolifera-

tion, we measured the frequency with which each subclone ap-

peared across metastases, rather than its relative abundance. 

This analysis revealed a broad spectrum of colonization capac-

ities within both KPC-1 and KPC-2 cohorts, with some sub-

clones detected in nearly all metastases and others observed 

rarely (Figure 1D). Subclones present in >50% of metastases 

were classified as met-high, and the remainder as met-low. To 

evaluate whether this phenotype was liver specific, we repeated 

the assay using intraperitoneal injection, which models post-

dissemination colonization of the peritoneum 18 (Figures 1B– 

1D). Subclonal colonization potential was consistent across 

both anatomic sites, suggesting that the met-high subclones 

possess a general advantage in metastatic colonization rather 

than liver-specific tropism.

To identify interactions between subclones, we systematically 

tested whether each pair of subclones was co-represented more 

or less than would be expected by chance. There were no signif-

icant interactions in the KPC-1 experiments (Figure S1A). How-

ever, in the KPC-2 liver-colonization experiment, there were 

several instances of met-low subclones being significantly over-

represented in the presence of a met-high subclone or another 

met-low subclone (Fisher’s exact test, false discovery rate 

[FDR] <0.05). These results suggest that met-low subclones 

can successfully colonize by ‘‘piggybacking’’ on met-high sub-

clones or cooperating with other met-low subclones. In contrast, 

only met-high subclones could form metastases independently 

(Figure S1B).

To exclude differences in proliferative capacity as a confound-

ing factor, we conducted in vitro proliferation and competition 

assays, neither of which demonstrated a growth advantage for 

met-high subclones (Figures 1E and 1F). All subclones exhibited 

recombination of the LSL-Kras G12D/+ and LSL-Trp53 R172H/+ al-

leles (Figure S1C). Additionally, all but one subclone (KPC-

2_LoA) had undergone loss-of-heterozygosity at the wild-type 

(WT) Trp53 locus; KPC-2_LoA was excluded from further ana-

lyses to limit our cohort to fully transformed subclones. 19 

Collectively, these results establish that our met-high PDAC 

subclones have an advantage in metastatic colonization 

compared to the met-low.

Identification of genes defining met-high and met-low 

states

We reasoned that successful cells in our clonal-competition assay 

must realize their advantage in completing the latter half of the met-

astatic cascade immediately after injection; therefore, these cells 

are likely to be expressing the genes that confer them this advan-

tage at the time of injection. We further reasoned that genes 

responsible for conferring this stable metastatic advantage are 

likely to be under regulation required for mitotic transmission. In 

this work, we define ‘‘epigenetics’’ as the mitotically heritable
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Figure 1. Isolation of primary PDAC subclones with high and low liver-colonization potential

(A) Schematic overview.

(B) Representative gross pathology and H&E-stained formalin-fixed paraffin-embedded (FFPE) sections. Scale bars: 500 μm and 50 μm (insets).

(C and D) (C) Histograms of tumor clonalities—the number of unique subclones per tumor. (D) Detection frequency of each subclone. Points, individual mice; bars, 

group means ± SEM. Sample sizes: KPC-1 liver, 27 metastases (three mice); KPC-1 peritoneum, 24 metastases (five mice); KPC-2 liver, 46 metastases (five mice); 

KPC-2 peritoneum, 60 metastases (five mice).

(E) In vitro growth curves. Points represent the mean average of four technical replicates, with error bars representing the SEM.

(F) Fraction of three 10-cm dishes in which each subclone was observed after 28 days of passaging.
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regulation of gene expression that maintains distinct cell states 

across cell divisions. 20 Chromatin openness, measurable 

genome-wide with assay for transposase-accessible chromatin 

using sequencing (ATAC-seq), integrates diverse epigenetic 

mechanisms, including DNA methylation, histone modifications, 

and transcription factor (TF)-driven feedback loops. 21 Therefore, 

we performed both RNA-seq and ATAC-seq on the met-high 

(n = 5) and met-low (n = 11) subclones to characterize their pre-in-

jection transcriptomes and chromatin landscapes, respectively. 

There were 498 genes with increased expression in met-high sub-

clones and 434 with increased expression in met-low (Table S1), 

and, out of the 176,964 total shared peaks, there were 2,725 

(1.5%) with increased accessibility in met-high subclones and 

5,720 (3.2%) with increased accessibility in met-low (Table S2), us-

ing an FDR cutoff of 0.05 in both cases. Reassuringly, differentially 

accessible peaks had the expected signal shape across all the 

tested subclones (Figure 2A) and a large majority (76%) overlap-

ped candidate cis-regulatory elements identified by the 

Encyclopedia of DNA Elements (ENCODE) project in mouse tis-

sues (Figure S2). Furthermore, unsupervised hierarchical clus-

tering based on either differentially accessible peaks (Figure 2B) 

or differentially expressed genes (Figure 2C) perfectly segregated 

met-high subclones from met-low.

Next, we assigned ATAC-seq peaks to their nearest gene and 

observed correlation of differentially accessible peaks with dif-

ferential gene expression (Figure 2D). 84% of differentially 

accessible peaks were assigned to genes with unchanged 

expression. This result is expected as some peaks may not regu-

late any genes, their target gene may be in a poised state, or their 

target may not be the nearest gene. For differentially accessible 

peaks linked to differentially expressed genes, the genes tended 

to follow the expected pattern: 97% of significant genes linked to 

peaks with increased accessibility in met-high subclones had 

increased expression in met-high subclones, and 91% of signif-

icant genes linked to peaks with increased accessibility in met-

low subclones had increased expression in met-low subclones. 

We refer to the genes with differential expression concordant 

with the differential accessibility of at least one assigned peak 

as ‘‘met-high genes’’ (n = 207; Table S3) or ‘‘met-low genes’’ 

(n = 182; Table S3) based on their increased expression in 

met-high or met-low subclones, respectively. Met-high and 

met-low genes define a cell-state axis separating PDAC sub-

clones with high and low metastatic-colonization potential.

To gain insights into the biological functions enabled by these 

genes, we applied gene set enrichment analysis using the Gene 

Ontology (GO) 22,23 Biological Process and Kyoto Encyclopedia 

of Genes and Genomes 24 (KEGG) Pathway databases. The top 

three out of the five total KEGG gene sets significantly enriched 

among the met-high genes using an FDR cutoff of 0.05 were 

related to infection or inflammation (e.g., ‘‘TNF signaling 

pathway’’; Figure 2E; Table S4). No GO terms were enriched 

among the met-high genes. Among met-low genes, there were 

50 GO pathways significantly enriched using an FDR cutoff of 

0.05 (Figure 2F; Table S4). These pathways were divided by 

manual curation into three classes: development (19/50; e.g., 

‘‘muscle cell differentiation’’), motility (16/50; e.g., ‘‘ameboidal-

type cell migration’’), and Wnt (7/50; e.g., ‘‘Wnt signaling 

pathway’’). The remaining eight pathways could not be confi-

dently assigned to one of these groups. No KEGG terms were 

enriched among the met-low genes. Review of genes driving 

enrichment of these pathways (Figure 2G) paints a picture of 

complex differences between the met-high and met-low sub-

clones, with a clear signal toward activation of inflammation-

related genes in met-high and activation of genes specific to 

adjacent developmental lineages, particularly pancreas neuroen-

docrine progenitors, in met-low. Interpretation of motility and Wnt 

pathway enrichment in met-low subclones is more challenging, 

as the individual genes involved do not point toward a coherent 

phenotype. In line with the pathway-enrichment results, TF foot-

printing of ATAC-seq peaks 25 revealed increased differential 

binding scores for nuclear factor (NF)-κB, a master regulator of 

inflammation, in met-high subclones (two-sided t test, adjusted 

p < 2.2E− 16 for NFKB2, NFKB1, REL, RELA, and RELB; 

Figure 2H) and CDX2 and HOXA13, TFs involved in anterior-pos-

terior patterning during embryonic development, in met-low 

(adjusted p < 2.2E− 16 for both CDX2 and HOXA13; Figure 2H).

The metastatic-potential axis is independent of normal-

to-PDAC and classical-basal axes

To place the met-high and met-low subclones within the natural 

history of PDAC development, we obtained ATAC-seq data 

from normal pancreata, pre-neoplasia from KC mice (i.e., Pdx1-

Cre;LSL-Kras G12D/+ ), pancreatitis, pre-neoplasia with pancrea-

titis, and primary PDAC from KPC mice (KPC-0) that Alonso-

Curbelo et al. 26 generated in the same mouse strain as ours. All 

raw data, including our met-high and met-low subclones, were 

processed through a unified pipeline, followed by batch correc-

tion of KPC-1 and KPC-2 samples relative to KPC-0 using Com-

Bat. 27 Principal-component analysis (PCA) recapitulated the 

expected normal-to-PDAC trajectory along the first principal 

component (Figure 3A). Met-high and met-low subclones did 

not separate along the principal components (Figure 3A, inset). 

To exclude batch correction artifacts, we projected uncorrected 

subclone data onto PCA axes derived from the Alonso-Curbelo 

dataset alone, which confirmed that met-high and met-low sub-

clones were indistinguishable along the progression trajectory 

(Figure S3). These results suggest that the metastatic-potential 

axis is orthogonal to the normal-to-PDAC axis.

To identify the molecular subtype of our captured subclones, 

we classified each subclone as classical or basal utilizing 

PurIST, 9 which generates a single-sample score representing 

the probability of basal-state occupancy from bulk transcrip-

tomic data. PurIST categorized all met-high and met-low sub-

clones as classical (Figure 3B). Moreover, there was no difference 

in expression of classical or basal marker genes 5 between met-

high and met-low subclones based on single-sample gene set 

enrichment analysis (ssGSEA) scores or average expression 

(two-sided Wilcoxon rank-sum tests; Figures 3C and 3D). These 

results indicate that the metastatic-potential axis is also orthog-

onal to the classical-basal axis.

The metastatic-potential axis is conserved between 

mouse and human PDAC

Capture and characterization of successful subclones in their 

mid-metastatic state is not feasible in patients with PDAC; how-

ever, there is a wealth of data from primary and established
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Figure 2. Identification of genes defining met-high and met-low states

(A) Averaged ATAC-seq signal for peaks with significantly greater accessibility in met-low (left) or met-high (right) subclones (FDR <0.05). Each line represents a 

subclone, colored by metastatic potential (red = high, blue = low).

(B and C) Heatmaps showing scaled, log-transformed normalized (B) accessibility or (C) expression for differentially accessible peaks or differentially expressed 

genes, respectively (FDR < 0.05). Subclones clustered by Pearson correlation.

(D) Scatterplot showing the relationship between differential chromatin accessibility (x axis) and differential gene expression (y axis) for each significant peak. 

Points are colored based on whether the nearest gene is differentially expressed.

(E and F) Dot plots of enriched pathways among met-low (E) or met-high (F) genes (FDR < 0.05).

(G) Heatmap of scaled, log-transformed, normalized expression for module genes across subclones.

(H) Rank-ordered plot of differential binding scores (DBS) for significant TF motifs (n = 499; two-sided t test, Bonferroni-adjusted p < 0.05), with positive values 

indicating increased binding in met-high.
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metastatic tumors. To determine whether we can leverage these 

data to assess our metastatic-potential axis in human PDAC, we 

tested whether established metastases in the mouse model 

display the met-high signature. We performed ATAC-seq before 

and after liver colonization on a monoclonal met-high KPC cell 

line (Figure S4A). The line was engineered to express GFP, which 

enabled the purification of cancer cells from stromal cells in the 

post-metastatic tumor via cell sorting. The ratio of mutant to 

WT reads at the Kras and Trp53 loci in the sorted tumors showed 

that they contained less than 5% stromal cell contamination 

(Figure S4B). The majority of both the met-high (72.7%) and 

met-low (74.2%) peaks were either unchanged or underwent 

phenotype-concordant changes in accessibility during liver colo-

nization (e.g., met-high peaks becoming more open; Figure S4C), 

suggesting that the open chromatin regions that allow a PDAC 

subclone to successfully colonize the liver are largely maintained 

during metastatic outgrowth.

With this information, we tested whether our gene-expression 

signature is enhanced in human PDAC metastases compared to 

primary tumors. To do so, we established MetScore, which uses 

rank-based statistics 28 to score a sample’s gene-expression 

profile with respect to enrichment of met-high genes and deple-

tion of met-low genes (n = 202 and 174 human orthologs, 

respectively; STAR Methods). We first focused on two cohorts 

of human PDAC with gene expression from primary and meta-

static tumors available: a cohort denoted as ‘‘PACA-US,’’ which 

includes microarray data from primary and metastatic tumors 

harvested from patients at time of autopsy as well as resected 

primary tumors from living patients, 5 and the International Can-

cer Genome Consortium PACA-CA cohort, which includes RNA-

seq data from tumor biopsies harvested from patients with un-

treated locally advanced or metastatic PDAC enrolled in the 

COMPASS 29 and PanGen 30 trials. MetScores were significantly 

higher in metastases compared to primary tumors in both PACA-

US and PACA-CA cohorts (two-sided Wilcoxon rank-sum test, 

p = 9.1E− 6 for PACA-US and 0.040 for PACA-CA; Figure 4A). 

To control for inter-patient variability, we performed a paired 

intra-patient comparison in the PACA-US patients with both pri-

mary tumors and metastases at the time of sampling, which 

showed increased MetScores in metastases (linear mixed-ef-

fects model, p = 4.5E− 4; Figure 4B). Moreover, metastases in 

PACA-US exhibited higher MetScores than primary tumors in 

both classical and basal groups based on that study’s original la-

bels (two-sided Wilcoxon rank-sum test p = 4.1E− 4 for classical 

and 0.048 for basal; Figure 4C), suggesting that shared mecha-

nisms underlie metastatic colonization across subtypes. 

Importantly, met-high and met-low genes accounted for only a 

small fraction of the thousands of genes differentially expressed 

between primary tumors and metastases (e.g., 1.1% and 1.2% 

of metastasis- and primary-upregulated genes in PACA-US,
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Figure 3. The metastatic-potential axis is independent of normal-to-PDAC and classical-basal axes

(A) PCA of normalized ATAC-seq signal across a consensus peak set.

(B) Predicted basal-like subtype probabilities based on PurIST, with values <0.5 indicating likely classical subtype.

(C) Bar plots showing ssGSEA scores (left) and average transcripts per million (TPM) (right) for classical and basal marker genes across met-high and met-low 

subclones. Bars, means ± SEM. NS, not significant (p > 0.05; two-sided Wilcoxon rank-sum tests).

(D) Heatmap of scaled, log-transformed, normalized expression for the marker genes used in (C) across subclones.

6 Cell Reports 44, 116701, December 23, 2025

Article
ll

OPEN ACCESS



−10

0

10

−15 −10 −5 0 5 10 15

UMAP1

Primary Metastasis

Classical Basal

0.04

0.08

0.12

0.16

0.000

0.025

0.050

0.075

0.100

0.125

M
et

S
co

re

Primary Metastasis

PACA−US

0.00

0.05

0.10

0.15

M
et

S
co

re
Primary Metastasis

PACA−US RA pts

−0.1

0.0

0.1

0.2

0.3

Prim
ar

y  

M
et

as
ta

sis

M
et

S
co

re

PACA−US PACA−CA

−0.05

0.00

0.05

0.10

0.15

0.00

0.05

0.10

0.15

M
et

S
co

re

Primary Metastasis

A
*** *

B
******

C

PDAC scRNA-seq atlas

PDAC scRNA-seq atlasD 

*** *

−0.1

0.0

0.1

0.2

0.3

−2 −1 0 1 2

scB/scC

M
et

S
co

re

count

r=0.005

E

0.884

0.886

0.888

0.890

MetScore scB/scC

A
cc

ur
ac

y 
(1

0−
fo

ld
 C

V
)

No information rate NS

***

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

Recall

P
re

ci
si

on

MetScore
scB/scC

F

−10

0

10

−15 −10 −5 0 5 10 15

UMAP1

U
M

A
P

2

1 2 3 4 5 6 7

−10

0

10

−10 0 10

UMAP1

−10

0

10

−10 0 10

UMAP1

Cluster MetScore scB/scC

Pooled − Subtype (Basal)

Pooled − MetScore

TCGA−PAAD − Subtype (Basal)

PACA−CA − Subtype (Basal)

PACA−US − Subtype (Basal)

TCGA−PAAD − MetScore

PACA−CA − MetScore

PACA−US − MetScore

1 2 3

Hazard Ratio (log scale)

Cox proportional hazards models
WorseBetter 

*

*

**

***

***

*

0.00

0.25

0.50

0.75

1.00

0 1000 2000 3000 4000

Time (days)

S
ur

vi
va

l P
ro

ba
bi

lit
y 

(%
)

Basal High Basal Low Classical High Classical Low

I Pooled PACA-US, PACA-CA, and TCGA-PAAD cohorts

P < 0.0001

G

0.00

0.25

0.50

0.75

1.00

1 2 3 4 5 6 7

Cluster

F
ra

ct
io

n 
of

 C
el

ls

Primary
Metastasis

PDAC scRNA-seq atlas Classifying single cells as metastatic or primary

H
OS 

Figure 4. The metastatic-potential axis is conserved between mouse and human PDAC

(A) Boxplots showing MetScore distributions in primary and metastatic tumors across PDAC cohorts. Points represent individual tumors. Two-sided Wilcoxon 

rank-sum tests; *p < 0.05, ***p < 0.001.

(legend continued on next page)

Cell Reports 44, 116701, December 23, 2025 7

Article
ll

OPEN ACCESS



respectively; Figure S5A), indicating that a direct primary versus 

metastasis comparison would not have recovered the metasta-

tic-potential axis. Moreover, a MetScore derived solely from 

transcriptomic differences between met-high and met-low sub-

clones (MetScore RNAonly ) was less effective at distinguishing me-

tastases and primary tumors, demonstrating the added value of 

integrating chromatin accessibility via RNA-seq and ATAC-seq 

(Figure S5B). Together, these observations underscore that 

multi-modal information from the mouse model was critical for 

distilling the metastatic-potential gene-expression signal from 

noise in human data.

To assess the relationship between cell-state heterogeneity 

and metastatic potential within human PDAC at the single-cell 

level, we leveraged a scRNA-seq atlas 31 comprising 172 pri-

mary tumors and 25 metastases, the majority of which (21/25, 

84%) were sampled from the liver. We applied MetScore to 

each tumor cell (n = 214,629 from primary tumors; n = 28,542 

from metastases; STAR Methods) and found that cells derived 

from metastases showed higher scores (Hedges’ g = 1.25; 

generalized linear model, p = 2.4E− 8; Figure 4D). These results 

demonstrate that the MetScore signature reflects tumor cell-

intrinsic features and not stromal contamination. We also calcu-

lated the single-cell basal versus classical commitment score 

(scB/scC) 8 for each tumor cell in the atlas and found that 

MetScore and scB/scC were strikingly uncorrelated (Pearson’s 

r = 0.005; Figure 4E), reaffirming that they are orthogonal biolog-

ical axes. Accordingly, while a logistic-regression model based 

on MetScore accurately discriminated metastasis-derived cells 

from primary tumor-derived cells upon 10-fold cross-validation 

(one-sided binomial test, p <2.2E− 16; precision-recall area un-

der the curve [PRAUC] = 0.394), a model based on scB/scC did 

not perform any better than the no-information rate (PRAUC = 

0.205; Figure 4F).

To further clarify the sources of heterogeneity within and 

across tumors, we used uniform manifold approximation and 

projection (UMAP) dimensionality reduction and Louvain clus-

tering, identifying seven distinct states within PDAC cells. Clus-

ters 5 and 6—composed entirely of metastasis-derived cells— 

exhibited the highest MetScores but were divergent with respect 

to scB/scC scores, with cluster 5 being more basal and cluster 6 

more classical (Figure 4G), demonstrating that elevated meta-

static potential can occur independently of basal-state commit-

ment. Most primary tumor-derived clusters (2, 4, and 7) were 

composed predominantly of cells with a low MetScore. Cluster

1 was more heterogeneous, comprising both primary and meta-

static cells and a mixture of high- and low-MetScore states. 

However, cluster 3—exclusively derived from primary tumors— 

contained cells with high MetScores, raising the possibility that 

it represents a subset of primary tumor cells poised for metas-

tasis. Collectively, these results demonstrate that MetScore cap-

tures a tumor cell-intrinsic transcriptomic signature underlying 

metastatic potential that is conserved between mouse and hu-

man PDAC and independent of classical-basal subtype.

MetScore is prognostic for survival in human PDAC 

Because metastasis is a major driver of mortality in localized 

and locally advanced PDAC, we explored the relationship be-

tween primary tumor MetScore and overall survival in three co-

horts with matched survival and transcriptomic data: patients 

with localized PDAC isolated from the previously analyzed 

PACA-US cohort; patients with locally advanced PDAC isolated 

from the previously analyzed PACA-CA cohort; and The Cancer 

Genome Atlas’s (TCGA’s) Pancreatic Adenocarcinoma (TCGA-

PAAD) cohort, 32 which includes only patients with localized 

PDAC. In each cohort, we compared the overall survival of pa-

tients with tumors in the top half of MetScores to those in the 

bottom half (Figure S5C). High-MetScore patients had a signif-

icantly worse overall survival in all three cohorts (hazard ratio 

[HR] for high MetScore = 1.6, 1.4, and 1.7; log rank test, p = 

0.02, 0.04, and 0.01; for PACA-US, PACA-CA, and TCGA-

PAAD, respectively). In contrast to MetScore, MetScore RNAonly 

was only prognostic in TCGA-PAAD (Figure S5D), further 

highlighting the importance of incorporating chromatin accessi-

bility to improve classifier robustness and generalizability. 

Multivariable Cox regression across the three cohorts showed 

that both MetScore and classical-basal subtype retained inde-

pendent prognostic significance when included in the same 

model (Figures 4H and 4I). Meta-analysis confirmed that high 

MetScore (pooled HR = 1.51, 95% confidence interval [CI] = 

1.20–1.89, p = 0.0005) and basal subtype (pooled HR = 1.73, 

95% CI = 1.31–2.29, p = 0.0002) were each associated with 

significantly worse overall survival, with minimal between-study 

heterogeneity. Individually, MetScore and classical-basal sub-

type each showed comparable prognostic discrimination (C-in-

dex 0.567 for MetScore and 0.566 for classical-basal subtype). 

A combined model improved performance (C-index 0.590), 

supporting that these features capture complementary, non-

redundant aspects of tumor biology. Together, these results

(B) Dot plot of MetScores for matched primary and metastatic tumors from rapid autopsy patients in the PACA-US cohort. Lines connect samples from the same 

patient. Linear mixed-effects model; ***p < 0.001.

(C) As in (A) but stratified by molecular subtype as annotated in Moffitt et al.

(D) Violin plot showing MetScore distributions across tumor cells derived from primary tumors and metastases. Generalized linear model; ***p < 0.001.

(E) Scatterplot showing the relationship between MetScore and scB/scC across tumor cells. Gray line, linear regression fit. Pearson’s r indicated.

(F) Left: dot plot showing accuracy (median ± interquartile range) across 10-fold cross-validation for logistic-regression models predicting donor type (primary vs. 

metastasis) using either MetScore or scB/scC. One-sided one-sample proportion tests comparing model accuracy to the no-information rate; ***p < 0.001. NS, 

not significant. Right: PR curves for models trained on MetScore or scB/scC.

(G) Top: UMAP plots of tumor cells colored as indicated. For MetScore and scB/scC, values above the 90th percentile and below the 10th percentile were 

capped. Bottom: bar plot showing the proportion of primary and metastasis-derived cells within each cluster.

(H) Forest plot showing hazard ratios and 95% confidence intervals for high MetScore (top 50%) and basal subtype (PurIST predicted probability >0.5) with 

respect to overall survival in Cox proportional hazards models adjusted for both variables. *p < 0.05, **p < 0.01, ***p < 0.001.

(I) Kaplan-Meier curve showing overall survival of patients pooled from cohorts in (H) stratified by MetScore and classical-basal subtype. p value from log rank 

test.
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demonstrate that primary tumor MetScore is associated with 

worse overall survival and, when combined with classical-basal 

subtype, allows for stratification of patients with PDAC with 

significantly greater prognostic accuracy.

A shared cell-state axis underlies metastatic potential 

across multiple human carcinoma subtypes

The steps of the metastatic cascade are similar for different 

cancer subtypes; thus, we wondered whether the factors that 

determine metastatic potential are conserved across subtypes. 

MetScores were significantly higher in metastases compared 

to primary tumors in all carcinoma cohorts we tested, including 

two colon adenocarcinoma (COAD) cohorts (two-sided Wil-

coxon rank-sum test, p < 2.2E− 16 for Colon-MCC 33 and 

Colon-Consortium 33 ), two breast invasive ductal carcinoma 

(BRCA) cohorts (p = 6.0E− 5 for Breast-AURORA-US 34 and 

0.018 for Breast-MBC 35 ), and one prostate adenocarcinoma 

(PRAD) cohort 36 (p = 4.4E− 8; Figure 5A). In contrast, we 

observed the opposite trend in a melanoma cohort, 37 where 

primary tumors had significantly higher MetScores than metas-

tases (p = 7.9E− 5; Figure 5B), suggesting that the metastatic-

potential axis defined by MetScore is not shared with this 

non-epithelial malignancy. 34

To test whether MetScore is relevant beyond liver and perito-

neal metastases, we stratified metastases by anatomic site in 

cohorts with sufficient sample sizes. In both Colon-MCC and 

Colon-Consortium, liver and lung metastases each individually 

had significantly higher MetScores than primary tumors (MCC, 

FDR < 2.2E− 16 for both sites; Consortium, FDR < 2.2E− 16 for 

liver, FDR = 2.5E− 12 for lung; Figure S6). In Breast-AURORA, 

liver, lung, soft tissue, CNS, and bone metastases all individually 

showed elevated MetScores (FDR = 2.2E− 3, 6.4E− 3, 6.4E− 3, 

8.9E− 3, and 0.047, respectively), although adrenal and lymph 

node metastases were not significant. In the Prostate-Michigan 

cohort, liver, lymph node, and soft tissue metastases each had 

higher MetScores than primary tumors (FDR = 3.1E− 4, 3.1E− 4, 

and 3.2E− 4, respectively). Collectively, these findings indicate 

that the metastatic-potential axis reflects a generalized advan-

tage in metastatic colonization across diverse anatomic sites, 

not restricted to the liver or peritoneum.

While all carcinomas are epithelial in origin, they can exhibit mo-

lecular subtypes with differing degrees of epithelial versus mesen-

chymal features. To assess whether MetScore’s prognostic value 

depends on epithelial identity, we stratified patients by subtype. In 

mismatch repair proficient (pMMR) COAD, high primary tumor 

MetScore was associated with worse overall survival in the 

strongly epithelial CMS2 (‘‘canonical’’) subtype across both the 

TCGA and Cartes d’Identité des Tumeurs COAD (CIT-COAD) 38 

cohorts (log rank test, p = 0.047 and 0.046, respectively; 

Figure 5C), but not in the mesenchymal CMS4 subtype. The 

‘‘metabolic’’ CMS3 subtype, while epithelial, was the least repre-

sented in both datasets, limiting statistical power to detect survival 

differences. The CMS1 subtype was excluded due to its enrich-

ment for MMR-deficient tumors. Similarly, in the METABRIC 39 

breast BRCA cohort, MetScore was prognostic in the strongly 

epithelial luminal A subtype (p = 0.047; Figure 5D), but not in 

luminal B (less differentiated), basal-like (mesenchymal), or 

HER2-enriched (variable epithelial-mesenchymal transition 

[EMT] status) subtypes. Combined, these results indicate that 

MetScore’s prognostic value is not uniform across all carcinoma 

subtypes but is most apparent in those that retain strong epithelial 

identity. Moreover, they reinforce that MetScore captures prog-

nostic information that is orthogonal to existing subtype-based 

classification schemes.

Given MetScore’s ability to distinguish primary from metastatic 

tumors and its prognostic relevance in COAD, we also asked 

whether it could predict benefit from adjuvant therapy. We pooled 

patients with stage II/III pMMR CMS2 COAD from the TCGA and 

CIT cohorts and stratified them by MetScore and peri-operative 

therapy status. Among patients with high MetScores, adjuvant 

therapy was associated with significantly improved overall sur-

vival (log rank test, p = 0.014; Figure 5E), while no significant 

benefit was observed in patients with low MetScores. Although 

a formal interaction term in a Cox proportional hazards model 

was not statistically significant (HR = 0.41, p = 0.27), this likely re-

flects limited power due to the small sample size (n = 170 patients) 

and number of events (n = 37 deaths).

Together, these findings indicate that the cell-state axis 

captured by MetScore is a recurrent feature of metastatic pro-

gression in several carcinoma subtypes—particularly those re-

taining epithelial identity—and may have clinical utility in strati-

fying patients for adjuvant therapy, especially in COAD.

Met-high PDAC cells enrich immune cells in their 

microenvironments

Given the enrichment of inflammation-related genes in met-high 

PDAC subclones, we hypothesized that one mechanism through 

which met-high cells realize their advantage is by remodeling the 

metastatic microenvironment. To test this, we calculated the 

average neoplastic cell MetScore for every tumor in the human 

PDAC scRNA-seq atlas and assessed correlation with the abun-

dance of stromal cell populations, as originally defined by the 

study authors. Strikingly, all annotated immune cell abundances 

were positively correlated with average tumor cell MetScore 

(Spearman’s ρ = 0.59, 0.54, 0.53, 0.51, 0.41, 0.38, and 0.34; 

FDR = 9.2E− 16, 4.1E− 13, 8.2E− 13, 1.1E− 11, 7.2E− 8, 

1.2E− 6, and 1.1E− 5 for T cell and natural killer cell (T&NK cell), 

cycling T&NK, myeloid, B cell, mast cell, plasma cell, and cycling 

myeloid, respectively; Figure 6A; Table S5). Meanwhile, multiple 

non-immune stromal cell abundances were negatively corre-

lated (ρ = − 0.41, − 0.30, and − 0.28; FDR = 8.6E− 8, 1.3E− 4, 

and 3.3E− 4; for endocrine, cancer-associated fibroblast, and

Figure 5. A shared cell-state axis underlies metastatic potential across multiple human carcinoma subtypes

(A and B) Boxplots showing MetScore distributions in primary and metastatic tumors across the indicated carcinoma cohorts. Points represent individual tumors. 

Two-sided Wilcoxon rank-sum tests; *p < 0.05, ***p < 0.001.

(C and D) Kaplan-Meier curves showing overall survival stratified by MetScore (high = top 50%, low = bottom 50%) in each cohort. p values from log rank tests. 

(E) Kaplan-Meier curves for overall survival in patients with stage II/III pMMR CMS2 COAD in the TCGA and CIT cohorts, stratified by receipt of post-operative 

therapy (yes vs. no) within low-MetScore (bottom 50%; left) and high-MetScore (top 50%; right) groups. p values from log rank tests.
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endothelial, respectively; no significant correlation for acinar 

cells or pericytes).

To validate these findings in additional patient cohorts, we de-

convolved bulk transcriptomic data in the PACA-US, PACA-CA, 

and TCGA-PAAD cohorts into tumor, immune, and non-immune 

stromal contributions using estimation of stromal and immune 

cells in malignant tumor tissues using expression data (ESTI-

MATE). 40 In all three datasets, the difference between immune 

and non-immune stromal Z scores was positively correlated

with MetScore (Spearman’s ρ = 0.43, 0.34, 0.41; p = 2.0E− 10, 

2.4E− 8, and 4.3E− 7; for PACA-US, PACA-CA, and TCGA-

PAAD, respectively; Figure 6B). Importantly, this trend was 

observed in metastases, significantly for PACA-US (ρ = 0.42, 

p = 9.0E− 4; Figure 6C) and exhibiting a strong trend for PACA-

CA (ρ = 0.29, p = 0.27), likely due to the limited number of metas-

tases (n = 16) in this cohort versus PACA-US (n = 61).

Together, these findings demonstrate a consistent link between 

met-high PDAC cells and immune cell-enriched, non-immune
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Figure 6. Met-high PDAC cells enrich immune cells in their microenvironments

(A) Scatterplots showing the relationship between average neoplastic cell MetScore and the abundance of stromal populations across tumors in the human PDAC 

scRNA-seq atlas.

(B) Correlation between bulk tumor MetScore and the immune-stromal score, calculated as the difference between scaled immune and stromal scores from the 

ESTIMATE algorithm.

(C) The same analysis restricted to metastases.

(D) Scatterplot showing correlation between single-cell MetScore in tumor-enriched epithelial cells in the PDAC scRNA-seq atlas and a proliferation score.

(E) UMAP plots of tumor cells colored as indicated. For MetScore and MKI67, values above the 90th percentile and below the 10th percentile were capped.

(F) Scatterplot showing correlation between single-cell MetScore in tumor-enriched epithelial cells in the PDAC scRNA-seq atlas and a survival score.

In (A–D) and (F), linear regression lines are shown, with Spearman’s rho and p values (FDR adjusted for A–C).
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Figure 7. c-Fos is a positive functional mediator of PDAC liver colonization

(A) Experimental design for (B).

(B) Volcano plot showing mean log 2 fold change in shRNA abundance between primary tumor and liver metastasis conditions (averaged across all shRNAs per 

gene) and − log 10 weighted combined p value from a linear model. Sample sizes: primary (n = 6 tumors, 6 mice); liver metastasis (n = 36 tumors, 4 mice).

(legend continued on next page)
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stromal cell-depleted microenvironments. This association could 

reflect two possibilities: either met-high cells remodel their sur-

roundings to favor immune accumulation or they arise within 

pre-existing immune-enriched niches. The recurrence of this 

pattern in metastases, where new microenvironments must be es-

tablished, supports remodeling.

While our results point to microenvironmental remodeling as a 

key cancer cell-extrinsic mechanism through which met-high 

cells achieve their metastatic advantage, we also found evidence 

for complementary cancer cell-intrinsic mechanisms. Specif-

ically, MetScore was strongly correlated with a conserved 

gene-expression signature that predicts cell and lineage-specific 

differences in growth rate 41 (Spearman’s ρ = 0.76, p <2.2E− 16; 

Figure 6D). Mapping MKI67 expression across the single-cell 

UMAP (Figure 6E) revealed groups of MKI67 + cells within 

MetScore-high regions—particularly clusters 5 and 6 (exclusively 

metastasis-derived) and cluster 1 (mixed primary and metasta-

tic). In contrast, MetScore-high cells in cluster 3 (exclusively pri-

mary tumor derived) were MKI67 − , indicating that high MetScore 

is not synonymous with proliferation. A distinct group of MKI67 + 

cells was also present within a MetScore-low, basal-differenti-

ated region in cluster 2. These results suggest that met-high 

PDAC cells—despite comparable intrinsic proliferative potential 

in vitro—are more likely to be in an active proliferative state in vivo, 

particularly following colonization, but that elevated MetScore is 

not required for robust proliferation. In addition, MetScore was 

correlated with a gene signature associated with cellular survival 

(‘‘GOBP_NEGATIVE_REGULATION_OF_APOPTOTIC_SIGNA-

LING_PATHWAY’’; ρ 0.73, p <2.2E− 16; Figure 6F).

Taken together, these findings support a model in which met-

high cells realize their advantage through a combination of can-

cer cell-intrinsic traits, including enhanced proliferation and sur-

vival, and cancer cell-extrinsic processes such as remodeling of 

the target-site microenvironment.

c-Fos is a positive functional mediator of PDAC liver 

colonization

To identify features of the met-high state that may underlie re-

modeling of the metastatic microenvironment observed in hu-

man PDAC, we performed a short hairpin RNA (shRNA) screen 

in the liver-colonization context (Figure 7A), targeting inflamma-

tion-related met-high genes (Il1a, Il18r1, Nos2, Fos, and Il23a),

other met-high genes (Tmem40, Myo1b, and Notch4), and a 

few non-met-high genes from the mouse genome to serve as 

controls (STAR Methods). The results showed that cells carrying 

shRNAs targeting Fos and Il23a were significantly depleted in 

liver metastases relative to primary tumors (linear model, 

weighted combined p = 3.9E− 3 for Fos and 0.011 for Il23a; 

Figure 7B), identifying these inflammation-related genes as novel 

functional enablers of liver colonization. In addition, shRNAs tar-

geting the met-high genes Myo1b, which encodes an atypical 

myosin, and Tmem40, which encodes a transmembrane protein 

with poorly characterized function, were similarly significantly 

depleted in liver metastases relative to primary tumors (weighted 

combined p = 6.3E− 3 for Myo1b and 0.020 for Tmem40; 

Figure 7B), suggesting that diverse pathways active within the 

met-high state contribute to metastatic competence. These find-

ings confirm that met-high genes are enriched for functional reg-

ulators of PDAC liver colonization and nominate multiple ave-

nues for therapeutic intervention.

We focused on our top hit, Fos, encoding the TF c-Fos, for 

further validation. Using the KPC-2_HiB subclone, which origi-

nates from a different tumor than KPC-1_Hi2 used in the screen, 

we generated cell lines harboring shRNAs targeting Fos or a con-

trol non-targeting shRNA and validated knockdown using RT-

qPCR (Figure 7C). We then performed splenic injections using 

equal mixtures of Fos-targeting/non-targeting shRNA-harboring 

cells, harvested the resulting liver metastases, and sequenced 

the shRNA amplicon. Cells carrying shRNAs targeting Fos were 

depleted in liver metastases relative to the starting population in 

a manner correlated to the degree of knockdown (Figure 7D). 

This depletion was significant for shFos #1 (one-sided Wilcoxon 

signed-rank test, p = 0.04) and exhibited a strong trend for shFos 

#2 that did not reach statistical significance (p = 0.11), likely due to 

the modest degree of knockdown (30%) with this shRNA. Impor-

tantly, Fos knockdown did not affect in vitro proliferation 

(Figure 7E), suggesting its role in liver metastasis is mediated 

through mechanisms specifically promoting colonization rather 

than a generic effect on cellular fitness. Supporting this, FOS 

expression was uncorrelated with the proliferation gene signature 

among tumor-enriched epithelial cells in the human PDAC scRNA-

seq atlas (Spearman’s ρ = 0.10; Figure 7F).

To identify the downstream programs influenced by c-Fos, we 

performed RNA-seq on the two Fos-knockdown and control

(C) RT-qPCR quantification of Fos mRNA in KPC-2_HiB cells expressing shRNAs targeting Fos or a non-targeting control. Rps29, housekeeping gene. Bars, 

mean ± SEM from three technical replicates. One-sided Wilcoxon rank-sum test; *p < 0.05.

(D) Histograms showing the distribution of shFos representation (shFos/(shFos + shControl)) in liver metastases following intrasplenic injection of mixed pop-

ulations. Dashed lines indicate pre-injection (blue) and post-injection (red) medians. Left, shFos #1 (n = 32 tumors, 3 mice); right, shFos #2 (n = 56 tumors, 5 mice). 

p values from one-sided one-sample Wilcoxon signed-rank tests.

(E) In vitro proliferation of KPC-2_HiB cells expressing Fos-targeting or control shRNAs. Points represent mean ± SEM from technical replicates (n = 4). Linear 

mixed-effects model; NS, not significant.

(F) Scatterplot depicting the relationship between FOS expression and a proliferation gene signature across tumor cells in the human PDAC scRNA-seq atlas. A 

regression line and Spearman’s rho (0.10) are shown, indicating negligible correlation.

(G) Volcano plot of differential expression between Fos-knockdown and control conditions in KPC-2_HiB cells. Two independent Fos-targeting shRNAs and one 

non-targeting control shRNA were used, each with three technical replicates. Genes colored by significance (red, upregulated; blue, downregulated; black, 

unchanged) with FDR < 0.05.

(H) Heatmap of scaled, log-transformed, normalized expression for genes highlighted in (G) across technical replicates.

(I) Kaplan-Meier curve for overall survival stratified by IL1A expression (high = top 50%; low = bottom 50%) in the PACA-US cohort. p value from log rank test. 

(J and K) CUT&RUN and ATAC-seq tracks in KPC-2_HiB cells at the Il1a (J) and Il1rn (K) loci. c-Fos CUT&RUN had two technical replicates; no-antibody CU-

T&RUN and ATAC-seq had one.
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KPC-2_HiB cell lines. Consistent with its role as a pleiotropic TF, c-

Fos depletion altered the expression of numerous genes: 802 

were significantly upregulated, while 1,116 were downregulated 

(FDR cutoff <0.05; Table S6), spanning diverse biological 

processes. This outcome suggests that c-Fos may facilitate met-

astatic colonization through multiple parallel mechanisms. 

Regardless, its potential effect on the immune composition of 

the metastatic niche can be clearly identified: Il11, Il34, and Il1a 

were consistently downregulated across independent shRNAs 

(log2FC = − 1.3, − 0.28, and − 0.24; FDR < 2.2E− 16, 0.015, and 

0.047, respectively; Figures 7G and 7H), whereas Cxcl5, Il1rn, 

Il18bp, and Il33 were upregulated (log2FC = 0.93, 0.72, 0.52, 

and 0.18; FDR = 2.4E− 7, 2.4E− 14, 0.026, and 0.013, respec-

tively). While the fold changes of some individual secreted factors 

are modest, the collective perturbation of the secretome is sub-

stantial and likely to exert strong effects on the tumor microenvi-

ronment. For example, upregulation of Il1a, encoding IL-1α, 

together with downregulation of Il1rn, encoding the IL-1 receptor 

antagonist (IL-1RA), would be expected to cooperate in 

enhancing IL-1 signaling. Consistent with this conclusion, we 

found that high IL1A expression in PDAC primary tumors was 

associated with worse overall survival in the PACA-US cohort 

(Figure 7I), in agreement with prior reports. 42

We next used CUT&RUN (Cleavage Under Targets & Release 

Using Nuclease) profiling to map c-Fos binding genome-wide in 

KPC-2_HiB cells, identifying 18,477 binding sites (Table S7). As-

signing each site to its nearest gene nominated 9,492 putative 

direct transcriptional targets. c-Fos can function as either a tran-

scriptional activator or repressor. 43 By integrating CUT&RUN 

with RNA-seq from Fos-knockdown cells, we identified candidate 

genes under direct c-Fos transcriptional activation (n = 803) or 

repression (n = 526), enabling mechanistic assignment of these 

changes. Among the secreted factors discussed above, Il34 and 

Il1a appeared to be directly activated, whereas Cxcl5, Il1rn, and 

Il33 were directly repressed. For instance, strong c-Fos occu-

pancy was detected at two open chromatin regions located

∼7.7 and ∼20.9 kb upstream of the Il1a transcription start site 

(TSS; Figure 7J), consistent with distal enhancers and supporting 

a direct regulatory role. At the Il1rn locus, two prominent binding 

sites were observed (Figure 7K), one at the promoter and the other 

at a distal enhancer ∼3.5 kb upstream of the TSS, consistent with 

direct transcriptional repression. These results suggest that much 

of the c-Fos effects on the secreted factors that would reprogram 

the metastatic niche are mediated by its direct binding as opposed 

to its indirect effects on other factors, positioning it as a critical up-

stream node for therapeutic targeting.

As a whole, these findings establish c-Fos as a reproducible 

functional driver of PDAC liver colonization, with consistent ef-

fects across independent subclones. They nominate c-Fos as 

a candidate therapeutic target and support a model in which 

c-Fos promotes colonization through a complex network of 

downstream targets, including multiple cytokines and cytokine 

antagonists.

DISCUSSION

In this study, we used DNA barcoding to uniquely label heteroge-

neous subclones in mouse primary PDAC tumors and measure

their performance in liver-colonization assays, identifying a set 

of genes enriched in subclones with high metastatic potential 

and another set depleted in these subclones, defining a novel 

metastatic-potential axis. A prevailing theory of PDAC develop-

ment positions highly metastatic subclones as being the most 

advanced along a normal-to-PDAC trajectory. 44 Our results do 

not support this model. Instead, we propose that the met-high 

and met-low states reflect a divergence at the endpoint of 

PDAC’s developmental trajectory, with each subclone type 

achieving high fitness in the primary tumor but with met-high 

subclones uniquely equipped for navigating the post-extravasa-

tion steps of the metastasis cascade.

To assess metastatic potential in humans, we developed 

MetScore, a rank-based single-sample scoring metric derived 

from enrichment and depletion patterns of the met-high and 

met-low gene sets in transcriptomic data. Human PDAC metas-

tases consistently exhibited higher MetScores than primary tu-

mors, and high primary tumor MetScores were associated with 

worse overall survival independently of classical-basal subtype, 

suggesting the metastatic-potential axis is conserved between 

mouse and human PDAC. An unexpected finding was the 

conservation of the metastatic-potential axis among several 

diverse human carcinoma subtypes, particularly those that 

retain epithelial identity, such as CMS2 COAD. This may present 

an opportunity to more accurately stratify patients with stage II 

and III CMS2 COAD. Currently, decisions regarding whether 

to treat with adjuvant therapy and its duration in these patients 

are guided by clinical risk factors alone. Encouragingly, we 

observed a strong signal toward MetScore being predictive of 

adjuvant therapy benefit in stage II/III pMMR CMS2 COAD. 

Larger retrospective studies are required to validate the rela-

tionship between MetScore and adjuvant therapy benefit, 

explore interactions with clinical risk factors, and choose cutoffs 

for risk categories.

In addition to prognostic value, MetScore provided an open-

ing to assess the mechanistic drivers of PDAC liver coloniza-

tion. Across multiple patient cohorts, PDAC cells with a high 

MetScore occupied microenvironments enriched for immune 

cells and depleted for non-immune stromal cells. As this 

pattern was observed in metastases in addition to primary tu-

mors, it suggests active remodeling by met-high cells rather 

than passive adaptation to pre-existing niches. This remodeling 

is likely mediated, at least in part, by tumor cell-derived cyto-

kines and cytokine antagonists transcriptionally tuned by c-

Fos. This positions c-Fos as a potential therapeutic target, 

acting as a critical upstream node that coordinates multiple ef-

fectors. c-Fos inhibitors are already in clinical use for other in-

dications 45 but have not been evaluated in PDAC. While prior 

studies have implicated c-Fos in PDAC pathogenesis, 46,47 our 

work uniquely delineates its specific contribution to liver coloni-

zation. Future studies should define the downstream pathways 

by which c-Fos drives metastatic outgrowth and assess the 

therapeutic efficacy of c-Fos inhibition in preclinical PDAC 

models.

Overall, this work substantially expands the understanding of 

transcriptional heterogeneity in PDAC and identifies a metasta-

tic-potential axis conserved across several carcinoma sub-

types. It establishes MetScore as a robust biomarker capable

14 Cell Reports 44, 116701, December 23, 2025

Article
ll

OPEN ACCESS



of prognostication and potentially predicting adjuvant treatment 

benefit. Moreover, it nominates c-Fos and other novel targets 

as actionable mediators of metastatic colonization, laying the 

groundwork for future therapeutic development aimed at inter-

cepting metastasis.

Limitations of the study

While this study provides a framework for understanding met-

astatic-colonization potential in carcinomas, several technical 

and conceptual limitations should be acknowledged. First, all 

in vivo experiments were conducted in a single PDAC model 

(KPC) and exclusively in female mice, and our clonal analyses 

were based on a limited number of subclones. Nonetheless, 

the robust performance of MetScore across multiple patient 

datasets supports the broader relevance of transcriptional 

and chromatin-accessibility programs identified here. Second, 

while RNA-seq and ATAC-seq enabled characterization of 

transcriptomic and chromatin-accessibility differences be-

tween met-high and met-low subclones, these methods do 

not capture all layers of gene regulation. We did not assess 

DNA methylation, chromatin topology, or post-transcriptional 

mechanisms that may contribute to stable metastatic pheno-

types. Third, our analysis of metastatic potential across human 

carcinoma subtypes was not exhaustive. While conservation of 

the metastatic-potential axis was clear across tested carci-

nomas, other carcinoma subtypes may deviate from this 

pattern. Similarly, we examined only one non-epithelial malig-

nancy (melanoma), and future studies should investigate met-

astatic determinants in other non-epithelial solid tumors such 

as sarcomas. Fourth, the stromal populations we analyzed 

were defined broadly, yet each comprises multiple heteroge-

neous sub-states. Further work is needed to delineate the spe-

cific stromal subpopulations that define the met-high niche 

with greater granularity. Finally, our functional studies identi-

fying c-Fos as a positive mediator of liver colonization utilized 

shRNAs, which may have off-target effects. However, the use 

of multiple independent shRNAs targeting each gene mitigated 

the risk of off-target effects generating misleading conclu-

sions. While our data implicate c-Fos-driven cytokines and 

cytokine antagonists in microenvironmental remodeling, a 

direct causal link between these secreted factors and the 

establishment of a pro-metastatic niche remains to be estab-

lished. In addition, genes enriched in met-low subclones, 

including neuroendocrine, Wnt signaling, and motility-associ-

ated programs, were not functionally evaluated here; whether 

they actively suppress colonization or are passive markers re-

mains unknown.
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STAR★METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

c-Fos Active Motif 61421; RRID: AB_2793628

Chemicals, peptides, and recombinant proteins

RPMI 1640 Medium Gibco 11875093

Fetal Bovine Serum Thermo Fisher Scientific 16140071

Penicillin-Streptomycin Gibco 15140122

Non-essential Amino Acids Gibco 11140050

Sodium Pyruvate Gibco 11360070

L-glutamine Gibco 25030081

DMEM Gibco 11995065

Basic Nucleofector® Kit for Primary 

Mammalian Epithelial Cells

Lonza VPI-1005

Puromycin InvivoGen ant-pr-1

DMSO Sigma-Aldrich D2650

Propidium iodide Invitrogen 00-6990-50

NEBNext Library Quant Kit for Illumina New England Biolabs E7630

MiSeq Reagent Kit v2 Illumina MS-102-2002

SYBR Gold Thermo Fisher Scientific S11494

TRIzol Thermo Fisher Scientific 15596026

Chloroform Sigma-Aldrich C2432

NEBNext Poly(A) mRNA Magnetic Isolation Module New England Biolabs E7490

xGen RNA Library Prep Kit IDT 10009814

Lipofectamine 2000 Thermo Fisher Scientific 11668027

Neomycin Corning 61-234-RF

Tumor Dissociation Kit, mouse Miltenyi 130-096-730

ProtoScript II First Strand cDNA Synthesis Kit New England Biolabs E6560S

Forget-Me-Not EvaGreen qPCR Master Mix Biotium 31045

Critical commercial assays

e-Myco Mycoplasma PCR Detection Kit Bulldog Bio 2523348

DNeasy Blood and Tissue Kit Qiagen 69504

DNA Clean & Concentrator-5 Kit Zymo D4004

Qubit dsDNA HS Assay Kit Thermo Fisher Scientific Q32851

CyQUANT Cell Proliferation Assay Thermo Fisher Scientific C7026

RNA Clean & Concentrator-5 kit Zymo R1013

Deposited data

All RNA-seq, ATAC-seq, and CUT&RUN 

data generated in this study

NCBI SRA BioProject #PRJNA960830

ATAC-seq data from mouse pancreas 

pre-neoplasia and PDAC

NCBI SRA BioProject #PRJNA548087

Mouse cCREs SCREEN: Search Candidate cis-Regulatory 

Elements by ENCODE Registry of

cCREs (screen.encodeproject.org)

Version 3

Non-redundant vertebrate transcription 

factor binding profiles

JASPAR (https://jaspar.elixir.no/downloads/) 2022 Version

PACA-CA 29,30 pdacR 48 ICGC PACA-CA, 2016—RNAseq

PACA-US 5 pdacR Moffit, 2015—MA

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

TCGA-PAAD 32 UCSC Xena Browser 49 TCGA-PAAD

Colon-MCC 33 Gene Expression Omnibus 50 GSE131418

Colon-Consortium 33 Gene Expression Omnibus GSE131418

Breast-AURORA 34 Gene Expression Omnibus GSE193103

Breast-MBC 51 cBioPortal 52–54 The Metastatic Breast 

Cancer Project

Prostate-Michigan 36 Gene Expression Omnibus GSE35988

TCGA-SKCM 37 UCSC Xena Browser TCGA-SKCM

TCGA-COAD 55 UCSC Xena Browser TCGA-COAD

CIT-COAD 38 Gene Expression Omnibus GSE39582

METABRIC 39 cBioPortal METABRIC

PDAC scRNA-seq atlas 31 Zenodo 14199536

Experimental models: Cell lines

KPC-1 Dr. Lei Zhang KPC-O

KPC-2 Dr. Lei Zhang KPC-508F

HEK293T ATCC CRL-3216

Experimental models: Organisms/strains

C57BL/6J The Jackson Laboratory 000664

Oligonucleotides

PCR primers IDT See Table S8

shRNA ultramers IDT See Table S9

xGen UDI indexing primers IDT 10005922

Recombinant DNA

PB-U6insert Addgene 104536

PB-U6insert-EF1puro Addgene 104537

Super PiggyBac Transposase Expression Vector System Biosciences PB210PA-1

pLenti CMV GFP Neo Addgene 17447

pMD2.G Addgene 12259

pCMV delta R8.2 Addgene 12263

SGEP Addgene 111170

Software and algorithms

MARC1 Pipeline Kalhor Laboratory https://github.com/

Kalhor-Lab/MARC1-Pipeline

ATAC-seq Pipeline ENCODE https://github.com/ENCODE-DCC/

atac-seq-pipeline

Cutadapt Bioconda Version 1.9.1

Bowtie2 Bioconda Version 2.2.6 or 2.4.4 as 

noted in method details

Samtools htslib.org Version 1.7 or 1.15.1 as 

noted in method details

Picard Broad Institute 

(https://broadinstitute.github.io/picard/)

Version 1.126

MACS2 PyPI (https://pypi.org/project/MACS2/) Version 2.1.0 or 2.2.7.1 as 

noted in method details

DiffBind Bioconductor Version 3.14.1

ComBat sva package (Bioconductor) Version 3.52.0

R programming language The R Project for Statistical Computing Version 4.4.3

RStudio posit Version 2025.05.1 + 513

deepTools Bioconda Version 3.5.5

(Continued on next page)
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EXPERIMENTAL MODEL AND STUDY PARTICIPANTS

Cell lines

The KPC-1 and KPC-2 cell lines were a gift from Dr. Lei Zheng. They were generated from primary tumors of KPC mice 11 (i.e., Pdx1-

Cre;LSL-Kras G12D/+ ;Trp53 R172H/+ ) as described previously. 12,13 Cell lines were tested for mycoplasma contamination using a 

PCR-based kit (Bulldog Bio) and were found to be mycoplasma negative. Their identity was confirmed by genotyping the Pdx1-

Cre, LSL-Kras G12D/+ , and Trp53 R172H/+ loci (Figure S1). Both KPC-1 and KPC-2 were determined to be female via PCR amplification 

of the Smcx and Smcy genomic loci (data not shown). KPC cells were cultured in RPMI 1640 medium supplemented with FBS (10%), 

penicillin-streptomycin (100 U/mL), non-essential amino acids (1X), sodium pyruvate (1 mM), and L-glutamine (2 mM). HEK293T cells 

were purchased from ATCC and were cultured in DMEM supplemented with FBS (10%) and penicillin-streptomycin (100 U/mL). 

HEK293T cells are female.

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

ChIPseeker Bioconductor Version 1.40.1 or 1.42.1 as 

noted in method details

TOBIAS Bioconda Version 0.15.1

Trimmomatic The Usadel Lab (http://www.usadellab. 

org/cms/?page=trimmomatic)

Version 0.39

Salmon COMBINE lab (https://github.com/ 

COMBINE-lab/salmon/releases)

Version 1.10.1

Tximeta Bioconductor Version 1.22.1

DESeq2 Bioconductor Version 1.44.0

apeglm Bioconductor Version 1.28.0

PurIST Rashid Lab 

(https://github.com/naimurashid/PurIST)

N/A

GSVA Bioconductor Version 2.0.7

singscore Bioconductor Version 1.24.0

limma Bioconductor Version 3.62.2

CMScaller Oncosyne

(https://github.com/peterawe/CMScaller)

Version 2.0.1

survival CRAN Version 3.5–8 or 3.8–3 as 

noted in method details

ggforitfy CRAN Version 0.4.17

meta CRAN Version 8.0–2

Seurat CRAN Version 5.2.0

caret CRAN Version 6.0–94

yardstick CRAN Version 1.3.2

ESTIMATE MD Anderson Cancer Center 

(https://bioinformatics.mdanderson.org/ 

estimate/rpackage.html)

Version 1.0.13

Bowtie Bioconda Version 1.3.0

bestNormalize CRAN Version 1.9.1

FastQC Babraham Institute 

(https://www.bioinformatics. 

babraham.ac.uk/projects/fastqc/)

Version 0.12.1

Trim Galore Babraham Institute 

(https://www.bioinformatics. 

babraham.ac.uk/projects/trim_galore/)

Version 0.6.6

Gviz Bioconductor Version 1.50.0

ComplexHeatmap Bioconductor Version 2.20.0

ggplot2 CRAN Version 3.5.1
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Mouse models

All animal procedures were approved by Johns Hopkins University’s Animal Care and Use Committee (ACUC) and conformed to the 

relevant local and national regulatory standards. C57BL/6J mice were obtained from The Jackson Laboratory (strain #000664). 

Eight-week-old female mice were used. Splenic, intraperitoneal, and orthotopic injections were performed as described previ-

ously. 12,13,18,56 For splenic and intraperitoneal injections, 500,000 cells were injected. For orthotopic injections, 50,000 cells were 

injected. In all cases, the injected animals were allowed to incubate for 4 weeks prior to sacrifice. The one exception was the pre-

and post-liver colonization ATAC-seq experiment, where we performed splenic injections using 1M cells and sacrificed the mice after

2 weeks. Tumors were harvested in all cases with microdissection using a dissection microscope (ZEISS SteREO Discovery.V8).

METHOD DETAILS

Barcoding

The DNA barcodes utilized in this study were based on a previously published homing guide RNA (hgRNA) library. 14,15 Two transpos-

able plasmid libraries with random bases were mixed. The first library (Ins21) contains two stretches of degenerate bases, one 15 

bases in length (‘‘LeftBarcode’’) and the other 10 bases in length (‘‘RightBarcode’’). These two stretches are separated by a constant 

94 base region. It was constructed from the Addgene #104536 plasmid as described previously. 14 The second library (Ins25-puro) is 

very similar. It contains two stretches of degenerate bases, one 19 bases in length (‘‘LeftBarcode’’) and the other 10 bases in length 

(‘‘RightBarcode’’), that are separated by a constant 94 base region; however, it also contains a puromycin resistance marker ex-

pressed by the EF-1α promoter. It was constructed from the Addgene #104537 plasmid as described previously. 14 The inserts in 

both plasmid libraries are flanked by PiggyBac inverted repeats, which enable their integration into the genome using the 

PiggyBac transposase. The constructs express the barcodes in small RNA form from a U6 promoter. The universal amplification 

primers for these barcodes allow reliable identification in sequencing based upon either the forward or reverse reads. 

Nucleofection was used to introduce the barcode libraries into KPC cells (Lonza Basic Nucleofector Kit for Primary Mammalian 

Epithelial Cells and Nucleofector II Device using program T-020). Barcode libraries were co-transfected with Super PiggyBac Trans-

posase Expression Vector to facilitate integration of the barcode construct into the genome. Two strategies were utilized to 

encourage a large number of barcode insertions per cell. The first strategy was co-transfection of the Ins21 and Ins25-puro libraries 

in a 19:1 ratio. Under these conditions, only cells with a large number of integrations would be likely to have integrated a puromycin 

resistance gene-containing construct, allowing us to eliminate cells with few integrations during antibiotic selection. The second 

strategy was using a transposase:transposon ratio of 1:10 rather than the more typically used 1:3. Because PiggyBac can both inte-

grate and excise transposons, having less PiggyBac in the cells reduces the likelihood that barcode constructs integrated into the 

genome will be removed during the initial transposition process.

Following barcode integration, the cells underwent puromycin selection for seven days. Puromycin-resistant cells were then sorted 

as single cells into wells of a 96-well plate using a Sony Sorter SH800. Propidium iodide was used to exclude dead cells. The resulting 

colonies were expanded over the course of several weeks while remaining under puromycin selection and then cryopreserved in fetal 

bovine serum with 10% DMSO.

Barcode sequencing – Library preparation and sequencing

Genomic DNA was isolated from cells or mouse tumors using a DNeasy Blood and Tissue kit as per the manufacturer’s instructions. 

The hgRNA locus was amplified and sequenced using next-generation sequencing as described previously. 15 Briefly, the hgRNA 

locus was amplified using primers with overhangs containing primer binding sites for Illumina sequencing by synthesis 

(i.e., PCR1). Then, a second PCR amplification was performed using primers with overhangs containing either P5 or P7 to facilitate 

binding to the Illumina flow cell and a random DNA sequence (i.e., the i5 or i7 index sequence) to facilitate pooling and deconvolution 

of multiple samples in the same sequencing run (i.e., PCR2). Deviating from the published protocol, a set of four forward and four 

reverse degenerate PCR1 primers was used to increase library diversity, and custom PCR2 indexing primers were used to allow 

for pooling of a large number of samples (Table S8). The resulting libraries were then pooled, purified using a DNA Clean and 

Concentrator-5 kit, and quantified using either a Qubit dsDNA HS Assay Kit or an NEBNext Library Quant Kit for Illumina. The final 

libraries were sequenced using an Illumina MiSeq device and MiSeq Reagent Kit v2.

Barcode sequencing – data processing and analysis

Raw sequencing data were processed on a high-performance computing cluster (The Advanced Research Computing at Hopkins 

[ARCH] ‘‘Rockfish’’ cluster [https://www.arch.jhu.edu/about-arch/]) using the previously published MARC1 pipeline. 15 Briefly, this 

pipeline decompresses the raw sequencing data, compiles Read 1 and Read 2 sequences from each sample to a list of paired 

LeftBarcodes and RightBarcodes, sequentially corrects for sequencing errors in the LeftBarcode and RightBarcode regions, and 

then compiles complete lists of LeftBarcode-RightBarcode counts for each sample.

To characterize the barcodes specific to each subclone, local Python scripts were used to first filter out unique LeftBarcode-

RightBarcode pairs with fewer than 3–4 reads, depending on sequencing depth. Then the RightBarcode sequences specific to 

that subclone were defined by filtering out RightBarcodes whose reads made up less than 1% of the total reads. Finally, each 

RightBarcode’s LeftBarcode mate was defined as the most abundant LeftBarcode out of those paired with that RightBarcode.
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To characterize the subclones present in a tumor or in vitro culture, local Python scripts were used to first filter out unique 

LeftBarcode-RightBarcode pairs with fewer than three reads. Then, the identifier-spacer pairs found in that tumor were cross-refer-

enced against LeftBarcode-RightBarcode pairs specific to each subclone included in the experiment (i.e., either all KPC-1-derived 

subclones or all KPC-2-derived subclones). Since all LeftBarcode-RightBarcode pairs were unique to their assigned subclone, the 

presence of a single LeftBarcode-RightBarcode pair was sufficient to indicate the presence of its assigned subclone in the tumor. 

Using this strategy, each tumor was noted for the presence or absence of each subclone included in the experiment.

Gross pathology and histology

Photographs of mouse tumors were taken using an iPhone 13.

Mouse tumors were fixed in 10% neutral buffered formalin for 48 h, after which they were processed into paraffin-embedded tissue 

blocks as described previously. 56 They were then sectioned and stained with hematoxylin and eosin (H&E) as described previously. 56 

Light micrographs of the H&E-stained sections were captured using a Zeiss Axio Vert.A1 microscope.

Proliferation assays

Cells were seeded into wells of a 96-well plate (5,000 or 10,000 cells, depending on the experiment). Relative cell number at each time 

point (24, 48, and 72 h) was quantified using a CyQUANT Cell Proliferation Assay, for cells in culture, as per the manufacturer’s in-

structions. The resulting cell counts were normalized to the 24-h values. For the Fos-knockdown experiments, pP-values were calcu-

lated using a linear mixed-effects model testing the interaction between time and shRNA (Fos-targeting vs. control) with respect to 

cell number.

Genotyping

Genomic DNA was isolated from each KPC-1 and KPC-2 derived monoclonal line using a DNeasy Blood and Tissue kit as per the 

manufacturer’s instructions. Genotyping PCR reactions were performed according to The Jackson Laboratory for Pdx1-Cre, 57 

and the Tyler Jacks Laboratory for Lsl-Kras G12D58 and for Lsl-Trp53 R17H . 59 PCR products were separated on a 1% agarose gel 

run at 8V/cm for one hour and visualized with SYBR Gold reagent as per the manufacturer’s recommendations.

Bulk RNA-seq – Library preparation

For transcriptomic profiling of met-high and met-low monoclonal KPC cell lines and for characterization of gene expression changes 

downstream of Fos knockdown, cells grown in vitro were lysed in TRIzol reagent, followed by chloroform extraction and cleanup us-

ing the RNA Clean and Concentrator-5 Kit according to the manufacturer’s instructions.

For the met-high vs. met-low comparison, mRNA was enriched with the NEBNext Poly(A) mRNA Magnetic Isolation Module. Li-

braries were prepared using the xGen RNA Library Prep Kit and xGen UDI indexing primers.

For Fos knockdown samples, total RNA was shipped to Azenta Life Sciences, where libraries were prepared using their standard 

poly(A)-selected RNA-seq protocol.

All libraries were sequenced on an Illumina NovaSeq 6000 platform with 150 bp paired-end reads.

Bulk RNA-seq – data processing and analysis

Raw RNA-seq data were processed on a high-performance computing cluster (the Rockfish cluster described in Barcode 

sequencing – data processing and analysis). Adapter sequences were trimmed using Trimmomatic 60 0.39. Transcripts were 

then quantified using Salmon 61 1.10.1 in the mapping-based mode with GC bias correction. The M33 (GRCm39) transcript se-

quences from GENCODE 62 were used as the reference transcriptome.

Then, locally in R, transcript quantifications were imported and summarized to the gene level using Tximeta 63 1.22.1.

For the metastasis-high vs. metastasis-low comparison, genes with fewer than 50 reads across all KPC samples were first 

excluded. Then, the generalized linear model functionality of DESeq2 1.44.0 was utilized to identify differentially expressed genes 

between metastasis-high and metastasis-low subclones while controlling for parental group status by modeling the metastatic po-

tential (i.e., high vs. low) as a fixed effect and parental group (i.e., KPC-1 vs. KPC-2) as a random effect (design: ∼parental_group + 

metastatic_potential). An FDR cutoff of 0.05 was used.

For the Fos-knockdown versus control comparison, genes with fewer than 50 reads across all samples were excluded. Differential 

expression analysis was performed using DESeq2 (v1.44.0) with a design formula ∼ Knockdown, pooling replicates from both 

shRNAs. Log 2 fold changes were shrunken using apeglm (v1.28.0), and significance was determined at an FDR <0.05. For secreted 

factors highlighted in the main text, we additionally verified that expression changes were consistent across both independent 

shRNAs (Figure 7H).

To classify the KPC subclones as being either classical or basal subtype, the PurIST classifier 9 was used to calculate the probability 

of basal subtype classification for each sample. This was performed in R by following the publisher’s instructions. The human clas-

sical and basal subtype-defining genes used by the classifier were converted to their mouse orthologs using the Ensembl 64 BioMart 

web portal. Bulk RNA-seq data from each subclone were used as input to the classifier, specifically gene TPM.

To compare expression of classical and basal marker genes between met-high and met-low subclones, single sample gene set 

enrichment analysis (ssGSEA) was performed using the GSVA package 65 version 2.0.7 using log 2 (x+1) TPM as input. Classical
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and basal marker genes were defined as the top 25 gene exemplars for the subtype factors from Moffitt et al., 2015 5 restricted to 

those with well-characterized mouse orthologs. The final gene sets used are listed in Figure 3D. Differences in ssGSEA enrichment 

score and average TPM between met-high and met-low subclones were assessed using two-sided Wilcoxon rank-sum tests. 

Enrichment of GO 22,23 and KEGG 24 (Kyoto Encyclopedia of Genes and Genomes) pathways amongst metastasis-high and metas-

tasis-low genes was assessed in R using the enrichGO() and enrichKEGG() functions in clusterProfiler 66 4.12.0. An FDR cutoff of 

0.05 was used.

ATAC-seq – Library preparation

ATAC-seq libraries were generated as described previously. 67 Libraries were then pooled and sequenced on a NovaSeq 6000 (met-

high and met-low subclones) or NovaSeq X Plus (pre- and post-colonization experiment) using 100 bp paired-end reads.

ATAC-seq – data processing and analysis

Raw sequencing data were processed on a high-performance computing cluster (the Rockfish cluster described in Barcode 

sequencing – data processing and analysis) using the ENCODE project’s publicly available ATAC-seq pipeline 68 with default set-

tings. Briefly, adapters were trimmed using cutadapt 1.9.1, trimmed reads were aligned to the mm10 genome using Bowtie2 69 2.2.6, 

low-quality, mitochondrial, and duplicate reads were filtered out using Samtools 70 1.7 with Picard 71 1.126 to mark duplicates, and 

peaks were called using Macs2 72 2.1.0. For two samples, KPC-2_LoC and KPC-2_HiA, two independent libraries were prepared 

from separate aliquots of cryopreserved cells (i.e., technical replicates). Raw sequencing data from technical replicates were pooled 

before processing.

ATAC-seq data from normal, pre-neoplasia, pancreatitis, pre-neoplasia+pancreatitis, and primary PDAC generated by Alonso-

Curbelo and colleagues 26 were downloaded from NCBI (BioProject #PRJNA548087) and processed in the same manner.

Locally in R, a consensus peak set was generated by merging overlapping peaks from the individual samples’ peak sets using 

DiffBind 73 3.14.1. Then, a normalized count matrix, i.e., the number of reads aligning to each peak, normalized by the total reads 

in peaks for that sample, across all samples, was generated using DiffBind.

For analyses that included both the metastasis-high and metastasis-low subclones generated in this study, as well as the normal, 

pre-neoplasia, pancreatitis, pre-neoplasia+pancreatitis, and primary PDAC generated by Alonso-Curbelo and colleagues, 26 the 

normalized count matrix was batch corrected using ComBat 27 from the sva package (version 3.52.0). A parametric batch correction 

was performed with sample type (i.e., normal, pancreatitis, pre-neoplasia, pre-neoplasia+pancreatitis, PDAC) included as a covariate 

and with the Alonso-Curbelo et al. samples defined as the reference batch.

Principal component analysis was performed using the log 2 (x+1) transformed and scaled normalized count matrix using base R’s 

prcomp() function.

The generalized linear model functionality of DESeq2 74 was utilized to identify differentially accessible peaks between metastasis-

high and metastasis-low subclones while controlling for parental group status by modeling the metastatic potential (i.e., high vs. low) 

as a fixed effect and parental group (i.e., KPC-1 vs. KPC-2) as a random effect (design: ∼parental_group + metastatic_potential). In 

the pre-versus post-colonization experiment, DESeq2 was used to perform a straightforward comparison between the two condi-

tions (design: ∼condition). An FDR cutoff of 0.05 was used in both cases.

To visualize ATAC-seq signal profiles for peaks with increased accessibility in metastasis-high subclones and separately for peaks 

with increased accessibility in metastasis-low subclones across all of the tested subclones, a matrix containing scores for the 

genomic regions of interest was first generated using the plotProfile() function of DiffBind 3.14.1, and then plots were generated 

using the plotProfile command of deepTools 75 3.5.5.

Significantly differentially accessible peaks were assigned to their nearest genes using the annotatePeak() function from 

ChIPseeker 76 1.40.0 with the mm10 genome as the reference genome. We excluded 124 peaks assigned to predicted genes lacking 

an Ensembl ID and 2,640 peaks linked to genes that were lowly expressed in both met-high and met-low subclones.

Peaks were assessed for overlap with candidate cis-regulatory elements (cCREs). All mouse cCREs (mm10 genome) identified by 

the ENCODE project were downloaded from SCREEN: Search Candidate cis-Regulatory Elements by ENCODE Registry of cCREs 

V3. 77 Overlaps were broken down by category. For visualization purposes, ‘‘pELS’’ and ‘‘dELS’’ categories were merged into 

‘‘Enhancer’’; ‘‘PLS’’ and ‘‘CA-H3K4me3’’ categories were merged into ‘‘Promoter’’; and ‘‘CA’’, ‘‘CA-TF’’, and ‘‘TF’’ were merged 

into ‘‘Candidate RE, NOS’’.

Transcription factor footprinting

Non-redundant vertebrate transcription factor binding profiles, i.e., motifs, were downloaded from the JASPAR database. 78 Locally 

in R, this set of motifs was then filtered to exclude motifs corresponding to non-expressed or lowly expressed transcription factors in 

the KPC cells. Non-expressed genes were defined as those having fewer than 50 total reads across all samples in our RNA-seq data-

set, and lowly expressed genes were defined as those whose statistical significance was not calculated by DESeq2 due to low 

expression in our differential expression analysis.

Then, on a high-performance computing cluster (the Rockfish cluster described in Barcode sequencing – data processing and 

analysis), aligned ATAC-seq reads for every KPC sample were downsampled to the coverage of the least covered sample using the
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view command in samtools 1.15.1. Then, aligned ATAC-seq reads were merged amongst the metastasis-high samples and sepa-

rately amongst the metastasis-low samples using the merge command in samtools 1.15.1.

Finally, on the Rockfish cluster, transcription factor footprinting was performed by inputting the filtered motifs (n = 511), the metas-

tasis-high and metastasis-low merged aligned ATAC-seq reads, and the complete consensus peak set for all KPC samples (n = 

176,964 peaks) to TOBIAS 25 0.15.1. The ATACorrect command was used to correct the ATAC-seq signal in the merged samples 

for Tn5 insertion bias. Then, the ScoreBigwig command was used to calculate a continuous footprint score across peaks in the 

consensus peak set based on the depletion of signal and the general accessibility of the nearby region. Finally, the BINDetect com-

mand was used to (1) identify putative TF binding sites within peak regions by matching the known motifs to the peak region DNA 

sequences using MOODS 79 (MOtif Occurrence Detection Suite); (2) classify each putative TF binding site as being either bound 

or unbound in each condition (i.e., metastasis-high and metastasis-low) based on a footprint score cutoff; (3) calculate the log 2 
fold change in footprint score between the two conditions for each binding site; (4) calculate a differential binding score (DBS) for 

each motif representing the global distribution of log 2 fold changes across binding sites for that motif; and (5) calculate a p-value 

for each motif by comparing its DBS to 100 DBSs generated from randomly sampled log 2 fold changes from the background 

distribution.

Locally in R, differential binding score p-values were adjusted for multiple hypothesis testing using a Bonferroni adjustment. An 

adjusted p-value cutoff of 0.05 was used.

Engineering KPC-2_HiA cells to express GFP

pLenti CMV GFP Neo was packaged into lentiviral particles via co-transfection with VSV.G and gag/pol plasmids into HEK293T cells 

using Lipofectamine 2000 Transfection Reagent. Lentiviral particles were concentrated via precipitation with lentiviral concentration 

solution (4X stock is 40% [W/V] PEG-8000 and 1.2M NaCl in PBS [pH 7]). KPC-2_HiA cells were transduced in the presence of poly-

brene using a low multiplicity of infection. Transduced cells were selected via exposure to medium containing neomycin for 7 days.

Isolation of neoplastic cells from liver metastases

Tumor-laden mouse livers were dissociated into single cells using a Tumor Dissociation Kit, mouse as per the manufacturer’s instruc-

tions using the 37C_m_TDK_2 program. GFP-positive cells were isolated using a Sony Sorter SH800S. Dead cells were excluded 

using propidium iodide.

Scoring human tumor samples for MetScore and assigning molecular subtype

Bulk transcriptomic data (normalized microarray signals or RNA-seq counts) from human primary tumors and metastases were ob-

tained (see key resources table).

For microarray datasets with multiple probes per gene (Colon-MCC, Colon-Consortium, Prostate-Michigan, CIT-COAD, METABRIC), 

the probe with the highest average signal was retained. In RNA-seq datasets containing multiple entries per gene (e.g., Breast-MBC), 

counts were summed across entries to yield a single value per gene.

Dataset-specific filtering was applied where necessary

• TCGA-PAAD: Neuroendocrine tumors excluded.

• TCGA-COAD and CIT-COAD: Excluded mismatch repair-deficient or unannotated tumors.

• METABRIC: Restricted to patients with invasive ductal carcinoma.

Lowly expressed genes were excluded (average FPKM <1 for TCGA datasets; average TPM <1 for PACA-CA, Breast-AURORA, 

and Breast-MBC).

Mouse met-high (n = 207) and met-low (n = 182) genes were converted to human orthologs using Ensembl 64 BioMart, yielding 202 

met-high and 174 met-low genes. The same procedure was used to generate the broader MetScore RNAonly gene sets (433 high, 

403 low).

MetScore or MetScore RNAonly were calculated using the singscore 28 R package (v1.24.0). Genes were ranked with rankGenes(), 

followed by scoring via singscore() using human met-high genes as the up-set and met-low genes as the down-set. Only genes 

detected after dataset-specific filtering were included in scoring.

Comparisons of MetScore or MetScore RNAonly between primary tumors and metastases were performed using two-sided Wil-

coxon rank-sum tests. For PACA-US rapid autopsy cases with matched primary and metastatic samples, a linear mixed-effects 

model (anatomic site as fixed effect, patient as random effect) was applied.

Differential expression analyses in PACA-US and PACA-CA were conducted using the limma R package (v3.62.2) with Benjamini– 

Hochberg correction (FDR <0.05).

For subtype analyses, PACA-US patients were stratified by classical–basal subtype per original annotations, and MetScore com-

parisons were performed within subtypes using Wilcoxon rank-sum tests.

For survival analyses, localized or locally advanced primary tumors from PACA-US, PACA-CA, TCGA-PAAD, TCGA-COAD, CIT-

COAD, and METABRIC were stratified into high and low MetScore groups (top vs. bottom 50%). For TCGA-COAD and CIT-COAD, 

patients were further stratified by CMS subtype using the CMScaller package 80 (version 2.0.1). For METABRIC, patients were further
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stratified by PAM50 subtype using the authors’ original annotations. Kaplan–Meier curves were generated using the survival (version 

3.5–8) and ggfortify (version 0.4.17) packages; significance was assessed via log rank tests (p-value <0.05).

To assess independent prognostic value, PurIST was applied for classical–basal subtype assignment in PDAC cohorts. Multivari-

able Cox regression was performed using coxph() (survival version 3.8–3). Pooled hazard ratios were calculated using a fixed-ef-

fects meta-analysis model based on inverse-variance weighting of log-transformed hazard ratios using the meta R package (version 

8.0–2).

To assess predictive power for adjuvant chemotherapy benefit, patients with stage II and III pMMR CMS2 were pooled from the 

TCGA-COAD and CIT-COAD cohorts. Multivariable Cox regression was performed using coxph() (survival version 3.8–3) with 

MetScore, overall survival, and adjuvant therapy (yes vs. no) as covariates.

Single-cell RNA-seq analysis

Pre-normalised UMI counts together with cell-level metadata for the human PDAC single-cell atlas 31 were downloaded. All analyses 

were carried out in R 4.4.3 on the Rockfish high-performance computing cluster (described under Barcode sequencing – data pro-

cessing and analysis). The expression matrix was loaded as a Seurat v5.2.0 object.

Tumor-enriched epithelial cells were identified as follows. Cells labelled by the original authors as ‘‘DUCTAL’’ or ‘‘CYCLING 

DUCTAL’’ were isolated. Variable features were re-identified (vst, 2,000 genes), the data were re-scaled, principal-component anal-

ysis (RunPCA), neighbor graph construction (FindNeighbors, dims = 1–10), Louvain clustering (FindClusters, resolution = 

0.011), and UMAP visualization (RunUMAP, dims = 1–10) were repeated. This yielded four clusters, hereafter termed Ductal 1–4. 

Cluster Ductal 2 was highly enriched for cells derived from healthy donors or adjacent normal tissue and was inferred to represent 

non-malignant epithelium. We therefore removed (i) all Ductal 2 cells and (ii) any remaining healthy-donor/adjacent-normal cells, leav-

ing 243,171 tumor-enriched epithelial cells. These were reclustered with the same pipeline (resolution = 0.05), producing the seven 

tumor clusters discussed in the manuscript.

For each tumor-enriched epithelial cell, we calculated (i) MetScore (method described in Scoring human tumor samples for 

MetScore and assigning molecular subtype, above), (ii) the previously published scBasal/scClassical commitment score (scB/ 

scC), 8 and (iii) a gene signature that predicts cell and lineage-specific differences in growth rate 41 using Seurat’s AddModuleScore. 

Violins and UMAP overlays were generated with FeaturePlot/VlnPlot; expression values were winsorised at the 10th and 90th 

percentiles for display only. Differences between primary tumor- and metastasis-derived tumor cells were calculated using a gener-

alized linear model with donor type as a fixed effect and donor as a random effect. Cell-wise MetScore × scB/scC correlation and 

FOS × proliferation used Pearson’s r.

Binary logistic-regression models were fitted with caret v6.0-94 (method = ‘‘glm’’, family = binomial, classProbs = TRUE, savePre-

dictions = ‘‘final’’). Cells were stratified by donor type (primary tumor or metastasis); 10-fold cross-validation (CV) was applied. The 

no-information rate (NIR, 88.3% primary tumor-derived) served as a naive baseline. For each model, the proportion of correct CV 

predictions was compared with the NIR by a one-sided binomial test (confusionMatrix, caret). Precision-recall curves and 

AUPRC were calculated with yardstick v1.3.2 (event_level = ‘‘second’’), using the out-of-fold predicted probabilities; baseline pre-

cision (random classifier) is shown as a dashed line at 0.117 (metastatic prevalence).

Deconvolution of human tumor bulk transcriptomic profiles using ESTIMATE

To assess stromal composition across tumors, we applied the ESTIMATE algorithm 40 (R package estimate version 1.0.13) to normal-

ized expression matrices. For each dataset, we reformatted the expression matrix to include HGNC gene symbols as the first column 

and sample identifiers as column headers, and exported the matrix as a tab-delimited text file. Common genes were filtered using 

filterCommonGenes(), and stromal, immune, and ESTIMATE scores were computed using estimateScore() with the appro-

priate platform specification (e.g., ‘‘affymetrix’’).

To quantify the relative balance between immune and non-immune stromal content, we computed z-scores for both the ImmuneScore 

and StromalScore across all tumors in a given cohort, then subtracted the StromalScore Z score from the ImmuneScore Z score to 

generate an Immune – Stroma (z-score). This composite metric captures the relative enrichment of immune versus fibrovascular 

stromal components in a normalized, cohort-wide manner. Higher values indicate a microenvironment skewed toward immune cell con-

tent relative to non-immune stroma (e.g., cancer-associated fibroblasts and endothelial cells).

Pooled shRNA screen and targeted Fos knockdown

We designed three miR-30-based shRNAs targeting each gene included in the screen, as well as three negative control shRNAs tar-

geting luciferase, which the KPC cells do not express. The majority of the shRNA sequences used were designed using the SplashRNA 

algorithm. 81 For genes for which the SplashRNA algorithm did not produce at least three shRNA sequences with SplashRNA scores 

greater than one, the remaining sequences were selected from the shRNAs in Table 3 in Fellmann et al., 2013. 82 All shRNA sequences 

used in this study can be found in Table S9.

shRNAs were cloned in a pooled fashion or individually into the SGEP lentiviral expression vector as described previously. 83 The 

resulting shRNA library or single shRNA-containing plasmids were packaged into lentiviral particles as described above
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(see engineering KPC-2_HiA cells to express GFP). KPC-1_Hi2 or KPC-2_HiB cells were transduced in the presence of polybrene 

using a low multiplicity of infection (< 0.3). GFP-positive cells were isolated using a Sony Sorter SH800S. Dead cells were excluded 

using propidium iodide.

Genomic DNA was isolated from a day zero pre-injection sample and mouse tumors using a DNeasy Blood and Tissue Kit accord-

ing to the manufacturer’s instructions. When tumors were too large to be digested and loaded onto a single spin column, they were 

subdivided into smaller chunks, each of which was digested and library prepped separately. Independent draws of the day zero pre-

injection sample were library prepped separately (n = 3 for the pooled screen and n = 4 for the Fos knockdown experiments). The 

shRNA locus was amplified using primers flanking the entire shRNA sequence with overhangs containing primer binding sites for 

Illumina sequencing by synthesis (i.e., PCR1; Table S8). Then, a second PCR amplification was performed using primers with over-

hangs containing either P5 or P7 to facilitate binding to the Illumina flow cell and a random DNA sequence (i.e., the i5 or i7 index 

sequence) to facilitate pooling and deconvolution of multiple samples in the same sequencing run (i.e., PCR2; Table S8). The resulting 

libraries were then pooled, purified using a DNA Clean and Concentrator-5 Kit, and quantified using a NEBNext Library Quant Kit for 

Illumina. The final libraries were sequenced using an Illumina MiSeq device and MiSeq Reagent Kit v2.

First, reads from each sample were mapped to the expected shRNA sequences present in the library. To accomplish this, Bowtie 84 

1.3.0 was used to align the region of Read1 expected to correspond to the variable region of the shRNA-guide stem against a refer-

ence composed of the variable regions present in the library. One base pair mismatches were allowed to account for sequencing 

error. For the single knockdown experiments, gaps one nucleotide in length were also allowed. This produced a list of counts for 

each shRNA in the experiment for each sample. This analysis was performed on a high-performance computing cluster (the Rockfish 

cluster described in Barcode sequencing – data processing and analysis).

For the Fos knockdown experiments, samples with fewer than 100 total reads aligning to expected shRNA sequences were 

excluded. Then, for each sample, the Fos-targeting fraction was calculated as shFos reads/(shFos reads + shControl reads). The 

mean fraction in day zero replicates served as the expected value. A one-sided Wilcoxon signed-rank test evaluated whether 

post-injection fractions were significantly lower (depletion of shFos).

For the pooled screen, shRNA counts for the three-day zero pre-injection samples were combined. shRNAs whose abundance in 

the pooled day zero pre-injection sample was less than 0.25% were excluded from further analysis steps. Tumors with fewer than 100 

shRNA counts were also excluded from further analysis steps.

The tumor samples were then normalized by dividing counts for each shRNA by the total shRNA counts for that respective sample. 

Normalized shRNA counts in samples derived from the same tumor (i.e., cases in which the tumor was too large to be digested and 

loaded onto a single spin column) were combined, and the resulting pooled samples were re-normalized by dividing the normalized 

counts for each shRNA by the total normalized counts for that pooled sample.

Enrichment/depletion of shRNAs between liver metastases and primary tumors was evaluated as described previously. 85 Briefly, 

normalized shRNA counts were subjected to linear regression modeling with the sample type (i.e., primary tumor vs. liver metastasis) 

as a covariate using the lm() function in R. The resulting coefficients, standard errors (SE), t-values, and pp-values were extracted 

for each shRNA. To account for variability and normalize the data, log 2 fold changes of the non-targeting control shRNAs were 

normalized using the bestNormalize package (version 1.9.1) to create a transformation object. This transformation was then applied 

to the log 2 fold changes of targeting shRNAs to calculate z-scores.

For weighted combined p-value calculation, z-scores were divided by the SE, and weights were defined as the inverse of the SE 

squared. Subsequently, shRNAs targeting the same gene were aggregated, and the adjusted z-scores were summed and normalized 

by the square root of the sum of the weights to generate combined z-scores for each gene. The combined z-scores were then used to 

calculate p-values by applying a two-tailed normal distribution test (2*pnorm(-abs(combined.z))). A p-value cutoff of 0.05 

was used.

Quantification of Fos knockdown by qRT-PCR

RNA was extracted using a TRizol–chloroform extraction followed by column cleanup using an RNA Clean and Concentrator-5 Kit as 

per the manufacturer’s instructions. RNA was then reverse transcribed to cDNA using a ProtoScript II First Strand cDNA Synthesis Kit 

as per the manufacturer’s instructions. Quantitative PCR was performed using Forget-Me-Not EvaGreen qPCR Master Mix on a 

QuantStudio 3 device (Thermo Fisher). See Table S8 for primer sequences. Data was analyzed using the standard curve method. 

Rps29 was used as a housekeeping gene. Differences between experimental and control groups were calculated using one-sided 

Wilcoxon rank-sum tests.

Characterization of genome-wide c-Fos binding sites using CUT&RUN

Cryopreserved cells were shipped to Active Motif (Carlsbad, CA) for CUT&RUN. Briefly, nuclei were immobilized on Concanavalin 

A-coated magnetic beads and incubated overnight at 4 ◦ C with 1 μL (∼1 μg) of c-Fos antibody. After washing to remove excess 

antibody, pMNase was added and activated with CaCl 2 for 2 h at 4 ◦ C to digest DNA fragments at antibody-bound sites. Released 

fragments were purified using DNA columns, and sequencing libraries were prepared with the NEBNext DNA Library Prep Kit (New 

England BioLabs) according to the manufacturer’s instructions. Libraries were sequenced on an Illumina NextSeq 2000 platform 

(38 bp paired-end reads).
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Basic data processing steps were performed by Active Motif. Sequencing reads were processed using the nf-core/cutandrun 

pipeline. Quality metrics were assessed with FastQC (version 0.12.1). Adapter trimming was performed with Trim Galore (version 

0.6.6). Trimmed reads were aligned to the mm10 reference genome with Bowtie2 (version 2.4.4), and SAM files were converted to 

BAM format using Samtools. Duplicate reads were removed with Picard MarkDuplicates, mitochondrial reads were excluded, 

and alignments overlapping ENCODE blacklisted regions were discarded. Peaks were called with MACS2 (version 2.2.7.1). The frac-

tion of reads in peaks (FRiP) was calculated as a measure of dataset quality. BigWig files were generated with deepTools using counts 

per million (CPM) normalization for visualization.

Downstream analysis was performed locally in R. Consensus peaks were generated from technical replicates using the dba.count 

function of DiffBind (version 3.16.0) with summits extended to 150 bp. Peaks were assigned to their nearest gene using the 

annotatePeaks() function in ChIPseeker (version 1.42.1).

Signal tracks were generated using the Gviz package (version 1.50.0) in R.

Data visualization and schematics

Heatmaps were generated in R using ComplexHeatmap 86 2.20.0. Unless otherwise noted, all other plots were generated in R using 

ggplot2 87 3.5.1. Schematics were created using BioRender.com.

QUANTIFICATION AND STATISTICAL ANALYSIS

The nature and number of experimental replicates utilized are described in the respective figure legends. The quantitative and sta-

tistical methods utilized, including filtering criteria, statistical tests used, and significance cutoffs, can be found in method details (in 

full) and the figure legends (in brief).
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