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SUMMARY
Natural and induced somaticmutations that accumulate in the genome during development record the phylo-
genetic relationships of cells; whether these lineage barcodes capture the complex dynamics of progenitor
states remains unclear. We introduce quantitative fate mapping, an approach to reconstruct the hierarchy,
commitment times, population sizes, and commitment biases of intermediate progenitor states during devel-
opment based on a time-scaled phylogeny of their descendants. To reconstruct time-scaled phylogenies
from lineage barcodes, we introduce Phylotime, a scalable maximum likelihood clustering approach based
on a general barcoding mutagenesis model. We validate these approaches using realistic in silico and in vitro
barcoding experiments. We further establish criteria for the number of cells that must be analyzed for robust
quantitative fatemapping and a progenitor state coverage statistic to assess the robustness. This work dem-
onstrates how lineage barcodes, natural or synthetic, enable analyzing progenitor fate and dynamics long
after embryonic development in any organism.
INTRODUCTION

Embryonic development is the genesis of complex body plans in

the animal kingdom. It starts with the zygote, a single cell in a toti-

potent state, and ends with thousands of specialized terminal

cell types organized in tissues. In between, dividing cells traverse

a hierarchy of increasingly diverse but decreasingly potent inter-

mediate progenitor states. Each progenitor state specifies the

ensuing states that its descendant cells may assume, thus di-

recting their fates. Collectively, progenitor states orchestrate

the emergence of terminal cell types to form complex tissues.

Therefore, delineating how progenitor states specify cell

fate is critical for understanding normal and dysregulated

development.

The recent advances in genome engineering and sequencing

have inspired a new approach for interrogating cell fate: retro-

spective lineage analysis using synthetic or natural somatic

DNA barcodes. These approaches rely on the accumulation of
4604 Cell 185, 4604–4620, November 23, 2022 ª 2022 Elsevier Inc.
randommutations in the genome during development. Eachmu-

tation is inherited by the descendants of the cell in which it oc-

curs; each descendant can add new mutations to the combina-

tion it inherited. This process marks each cell with a barcode—a

combination of mutations—that encodes its phylogenetic rela-

tionship to the other cells.1 Synthetic lineage barcoding, which

relies on gene editing technologies to induce mutations, has

been implemented in model organisms such as zebrafish2–4

and mouse.5–7 Natural lineage barcoding, which relies on natu-

rally occurring somatic mutations, has been primarily used in hu-

mans.8,9 These retrospective approaches hold a unique promise

for mapping cell fate. Unlike prospective lineage-tracing ap-

proaches,10 they have the potential to resolve entire hierarchies

of progenitor states, thereby facilitating the analysis of non-cell-

autonomous effects. Unlike single-cell molecular profiling ap-

proaches, they can bridge time gaps between terminal cells

and their progenitors that existed far earlier in time. Moreover,

they can be applied to humans and non-model organisms where
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analyzing somatic mutations from cadavers can be more prac-

tical and ethical than analyzing embryos.

Despite this compelling potential, the full scope of the informa-

tion that lineage barcoding can provide about the fate of the

intermediate progenitor states remains unclear for multiple rea-

sons. First, cell phylogeny is a function of cell divisions, and

most cell divisions in higher organisms do not accompany fate

decisions. In the roundworm Caenorhabditis elegans, a unique

model organism in which almost all cell divisions give rise to

daughters with different fates, the phylogeny of terminal cells is

identical to the fate of their progenitors.11 However, in more

complex organisms, progenitor populations can undergo cell

divisions that are not associated with fate decisions, leading to

divergences between phylogeny and fate.12,13 As a result, liver

hepatocytes of an identical progenitor state history may have

the maximum possible distance on the phylogenetic tree by

being the descendants of different cells at the two-cell stage.

Second, while the progenitor states and their fates remain largely

stereotyped within species, the phylogenetic histories of the

cell populations that assume those progenitor states can vary

greatly from embryo to embryo due to stochasticity in fate deci-

sions.14,15 As a result, phylogenies of different subsets of cells

from different embryos cannot be combined to synthesize a full

picture the same way they can be in C. elegans. Third, single-

cell lineage barcodes can be obtained for only a small sample

of cells, as current technologies can only sequence thousands

of single cells whereas most mammals have millions of cells in

each tissue. Given the divergences between fate and phylogeny

and the variable nature of the latter, it remains unclear how phy-

logenies derived from small samples can reliably inform organ-

ism-level fate maps. Complicating matters further, phylogenetic

inference from lineage barcodes is inherently subject to error

because a finite number of barcoding sites may not record every

cell division,16 and even with infinite barcodes, finding the

optimal tree is still a computationally intractable (NP-hard) prob-

lem.17 Collectively, these considerations raise critical questions

about the value of measuring cell phylogeny through barcoding

approaches in complex organisms: What features of progenitor

states are reflected in the phylogeny of a limited sample of cells?

How can these features be extracted from lineage barcodes?

To address these questions, we systematically studied the

relationship between cell fate and cell phylogeny as derived us-

ing lineage barcodes. First, we established amethod to generate

cell phylogenies and developed the ICE-FASE algorithm to

reconstruct quantitative fate maps—models that represent the

hierarchy and dynamics of progenitor states—from time-scaled

phylogenies. We found that quantitative fate mapping requires
Figure 1. Simulating time-scaled phylogenetic trees of sampled cells b

(A) Topology of a quantitative fate map. Arrows represent cell states; colored re

types at the time of sampling.

(B) Quantitative fatemap in (A) annotated with commitment time, population size, a

under fixed sampling at progenitor state commitment time or terminal type samplin

rows show the number of cells sampled from each terminal type under fixed and

(C) The panel of 331 quantitative fate maps. Themaps are in three sizes of 16, 32, a

most balanced (top) and the most unbalanced (bottom).

(D) Example time-scaled phylogeny of sampled cells generated by fixed sampling

based on (A).

See also Figures S1 and S2.
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adequate representation of each progenitor state’s progeny

among the sampled terminal cells. Second, we simulated syn-

thetic lineage barcoding in mice and established Phylotime, a

general and scalable method to infer time-scaled phylogenies

from lineage barcodes. We found that Phylotime-inferred phy-

logenies enable robust quantitative fate map reconstruction

when coupled with ICE-FASE. Overall, this work establishes

quantitative fate mapping as a general framework for capturing

the fate hierarchy and dynamics of progenitor populations using

lineage barcodes of their descendants.

RESULTS

Quantitative fate map: A model of progenitor field
dynamics in development
We began by establishing the quantitative fate map, a model of

the progenitor state hierarchy that gives rise to a group of cell

types (Figure 1A). Each progenitor state is defined by its potency,

which is the set of cell types it can produce. It is also associated

with a commitment event, when its cells transition to less potent

downstream states. The commitment event confers each pro-

genitor state three additional defining features: (1) commitment

time, which is the time when a progenitor state’s cells commit

to its downstream states; (2) population size, which is its number

of cells at commitment time; and (3) commitment bias, which is

the proportions of its population committing to each down-

stream state (Figure 1B). Commitment times represent the order

and pace of developmental events,18 population sizes are impor-

tant determinants of organ and tissue size,19 and commitment

biases reflect the epigenetic state of progenitors and the effect

of non-cell-autonomous cues.20 The progenitor states are unob-

served in barcoding experiments; only their descendants at the

time of sample collection are observed. We refer to these

observed descendants as terminal cell types. In summary, a

quantitative fate map defines the fate dynamics of a progenitor

field21—a collection of progenitor states that give rise to a set

of observed cells.

A diverse test panel of quantitative fate maps
We constructed 331 quantitative fate maps covering diverse

developmental scenarios (Figure 1C and S1A; STAR Methods).

Representing increasing field sizes, the maps are in three cate-

gories of 16, 32, or 64 terminal cell types. We label progenitor

states and terminal types with ‘‘P’’s and ‘‘T’’s followed by nu-

merals, respectively. Within each category, the topologies of

the maps range from perfectly balanced to highly unbalanced

(Figure 1C, S1B, and S1C) as measured by the Colless
ased on a panel of quantitative fate maps

ctangles represent their commitment events. Triangles represent terminal cell

nd commitment bias of its progenitor states. Pie charts show sampling fraction

g; numbers on pies show corresponding true population sizes. The bottom two

proportional sampling.

nd 64 terminal cell types. Three examples of each size are shown, including the

of 100 cells from each terminal type in the fate map shown in (A). Node colors
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imbalance index.22 In more unbalanced maps, progenitor

states split into increasingly unequal diversities of terminal

types (Figure 1C). In addition to size and topology, the parame-

ters of progenitor states within each map vary (Figures S1D–

S1J). Commitment times are between t = 2.5 and 10.9 days,

which roughly correspond to the beginning of fate restrictions

and the end of organogenesis in mouse development (Fig-

ure 1A–1C and S1D). Commitment biases were drawn from a

beta distribution and cover a wide range (Figure 1B and S1E;

STAR Methods). Cell division and death rates were drawn

from uniform distributions, ranging from 0.6 to 0.35 days per

doubling and 0.02 to 0.08 death probability per division, respec-

tively (Figures S1F–S1H), broadly matching reported rates dur-

ing mouse embryogenesis.23,24 As all fate maps start with one

founder cell at time t = 0, the division and death rates together

with other fate map parameters dictate the progenitor popula-

tion sizes at each point in time (Figure 1B, S1I, and S1J). All

fate maps end at t = 11.5 days when terminal cell types are

sampled for observation based on either fixed or proportional

sampling (Figure 1B). Under fixed sampling, the same number

of cells are sampled from each terminal type, imitating experi-

ments where target terminal cell types are purified using sorting

or other methodology. Under proportional sampling, each ter-

minal type is sampled based on its share of the total population,

imitating experiments where cells are sampled without enrich-

ment from whole tissues.

Modeling cell phylogeny based on a quantitative
fate map
We next established a generative model to simulate cell phylog-

enies based on each quantitative fate map. Generating the

entire tree of cell divisions for millions of cells (Figure 1B) is

computationally impractical. To overcome this problem, we

developed a model based on coalescent theory in population

genetics25–27 to generate time-scaled phylogenies only for

sampled terminal cells rather than for all terminal cells (Fig-

ure S2; STAR Methods). In brief, after choosing the number of

cells to be sampled from each terminal cell type of a fate

map, the number of cells from each progenitor state ancestral

to sampled terminal cells is generated at all prior time points

going backward to the founder cell. These sampled terminal

and progenitor cells compose the nodes of the phylogenetic

tree. Edges are then assigned by randomly connecting nodes

from each time point to their progenitor nodes in the earlier

time point. This approach generates time-scaled phylogenies

for sampled cells based on their progenitors’ fate map (Fig-

ure 1D) in a computationally efficient manner.

Using this model, we generated time-scaled phylogenies for

all quantitative fate maps in our test panel, sampling an average

of 100 cells per terminal type under both fixed and proportional

sampling (Figure 1B). To capture the variable nature of cell phy-

logeny, we simulated five phylogenies for each condition, repre-

senting a different set of cells being sampled from the same set

of terminal cell types in different individuals (Figure S2).

Together, these results represent 3,310 experiments (331

maps 3 2 sampling schemes 3 5 repeats) wherein phylogeny

is known for a small fraction of cells (average 0.07%) derived

from a complex field of progenitors. We will use these
phylogenies to establish and benchmark fate mapping

algorithms.

Reconstructing the hierarchy of progenitor states from
cell phylogeny
To derive fate map topology from time-scaled phylogenies, we

used the timings of apparent fate separations between terminal

cell types. First, we annotated each node in the phylogenetic tree

with its observed fate—the types of its observed terminal de-

scendants (Figure 2A). Next, we identified the nodes whose

observed fates are more potent than that of both their daughter

nodes (Figures 2A and 2B). For instance, if an internal node leads

to terminal cell types {T3, T4, T5} but {T3,T4} are only seen in one

of its branches and {T5} only in the other, this node constitutes a

fate separation (FASE) between T3 and T5 as well as between T4

and T5. The average time since FASEs between two terminal cell

types (i.e., FASE distance) measures their developmental dis-

tance: long FASE distances indicate early separation in develop-

ment, and short FASE distances indicate more recent separation

(Figures 2B and 2C). We can thus compile a matrix of FASE dis-

tances between all terminal cell types (Figure 2D) and apply a

clustering method (UPGMA) to obtain fate map topology (Fig-

ure 2D; STAR Methods). This fate map topology establishes

a hierarchy of increasingly diverse but decreasingly potent

‘‘inferred’’ progenitor states (labeled with ‘‘iP’’s followed by nu-

merals) that give rise to the observed cell types (Figure 2E). To

summarize, the FASE algorithm reconstructs a hierarchy of in-

ferred progenitor states based on the patterns of potency restric-

tion in the phylogeny.

We applied the FASE algorithm to reconstruct fate map topol-

ogy for each simulated phylogeny in our panel of 3,310 (Fig-

ure S1K). For comparison, we also used the shared progenitor

score (SPS), which estimates the distance between two terminal

cell types based on the number of nodes in the phylogenetic

tree that have those terminal types in their observed fate,

weighted by how many other terminal types are among the

observed fates.6 We further generated random fate map topol-

ogies as negative control (STAR Methods). In all cases, we

compared the reconstructed topology to that of its correspond-

ing true fate map using the Kendall-Colijn (KC) distance with its

tuning parameter (l) set to zero (KC0).
28 The KC distance mea-

sures the difference between rooted trees. It compares the

placement of the most recent common ancestor (MRCA) of all

pairs of tips relative to the root based on either the number of

edges (KC0) or path length (KC1). A KC0 distance of zero indi-

cates that the reconstructed and true fate maps have identical

topologies (a KC1 distance of zero, which we will use later, indi-

cates identical topologies and branch lengths between two

trees). The results show that FASE strategy consistently outper-

forms SPS (Figure 2F): it predicts perfectly accurate topologies

when the fate map is small or has low imbalance; it predicts

informative topologies even for large fate maps with extreme

imbalances. Unbalanced maps have smaller intervals between

commitment events (Figure S1L), making reconstruction of to-

pology more challenging. We also observed that fixed sampling

outperforms proportional sampling (Figure 2F), likely because it

ensures better representation of rare terminal populations.

These results establish the FASE algorithm as a robust and
Cell 185, 4604–4620, November 23, 2022 4607
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Figure 2. Reconstructing fate map topology from time-scaled phylogeny of sampled cells

(A) Example phylogenetic subtree. Each internal node is labeled with its observed fate. T4–T5 FASEs are colored orange.

(B) Phylogeny from Figure 1D showing T4–T5 (orange) and T15–T16 (blue) FASEs. T4, T5, T15, and T16 are colored according to the key on the bottom.

(C) Boxplots showing the temporal distribution of T4–T5 and T15–T16 FASEs in the tree in (B).

(D) Heatmap showing the FASE distance matrix for all pairs of terminal types in the tree in (B). Dendrogram shows hierarchical clustering result.

(E) The fate map topology reconstructed by clustering the FASE distance matrix in (D). Triangles, observed terminal types; diamonds, inferred progenitor

states (iPs).

(F) Scatterplots showing error of fatemap topology reconstruction (KC0) using FASE algorithm (red) or SPS (blue) as a function of imbalance for all 3,310 simulated

phylogenies faceted by fate map size (columns) and sampling strategy (rows). The gray points are based on random topology reconstructions. Solid trend lines

are locally weighted smoothing (LOESS).

See also Figure S3.
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scalable method to reconstruct fate map topology from cell

phylogeny.

To better understand the sources of topology reconstruction

inaccuracies, we investigated FASE distance error, which is

the difference between estimated FASE distance between two

terminal cell types and the time since their last common progen-

itor state in the true fate map. We found a negative correlation

between FASE distance error and the sampling fractions of pro-

genitor states (Pearson’s R =�0.40, p < 2.2e�16) (Figure S3A) in

the 3,310 simulated experiments. Sampling fraction is the pro-

portion of the progenitor state population whose progeny are

represented among sampled terminal cells and is known from

simulations (Figure 1B). Later progenitor states tend to have

larger population sizes and thus lower sampling fractions (Fig-

ure S3B). Undersampling the terminal descendants of a progen-

itor cell can bias its corresponding FASE distances (Figure S3C).

To validate the effect of sampling fraction, we generated phylog-

enies for all our 16-terminal type fate maps, sampling an average

of 25, 50, 100, and 200 cells per terminal type. We observed that

increased sampling reduces topology reconstruction error (Fig-

ure S3D). For example, every doubling of the number of sampled

cells, which increased the sampling fraction of progenitor states
4608 Cell 185, 4604–4620, November 23, 2022
by 33% on average, increased the percent of perfectly recon-

structed topologies by 18.9% on average. These results estab-

lish progenitor state sampling fraction as an important parameter

for fate map topology reconstruction.

Estimating progenitor state commitment time from cell
phylogeny
To characterize the dynamics of inferred progenitor states, we

turned to the internal nodes of the time-scaled phylogenies.

We assigned each internal node in the phylogenetic tree to the

least potent inferred progenitor state or terminal type from the re-

constructed fate map topology that contained the node’s

observed fate (Figure 3A). For example, a node with an observed

fate of {T2, T3, T4} can be assigned a more potent inferred state

of iP2 capable of {T1 to T5} if the now-reconstructed fatemap to-

pology (Figure 2E) indicates that iP2 differentiates into fates {T1,

T2} and {T3, T4, T5} (Figure 3B). To assess the fidelity of these

assignments, we compared the inferred states of internal nodes

in all 3,310 phylogenies to their true states, which are known from

simulations (Figure S3E). The only type of error was assigning an

internal node to a progenitor state less potent than its true state,

which occurred, on average, for 27.7% of the assignments in
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each phylogeny (Figures S3E and S3F). This type of error is also

caused by undersampling (Figure S3G); hence, we will keep

track of progenitor states’ sampling fractions going forward.

To derive the commitment time of each progenitor state, we

defined inferred commitment events (ICEs): an ICE is a node

whose inferred state is more potent than that of both of its im-

mediate descendants (Figures 3B and 3C). For example, in Fig-

ure 3B, when an internal node assigned to iP2 (capable of {T1 to

T5}) splits into two nodes with assigned states of T2 and iP14

(capable of {T3, T4}) respectively, we count this node as an

ICE for iP2. ICEs improve on FASEs by leveraging the now-re-

constructed fate map topology to identify a more confident

set of nodes that represent state transitions. We defined the

commitment time for a progenitor state as the mean of its ICE

times (Figure 3D). Across all progenitor states in our panel of

3,310, ICE times captured the relative timing of commitment

events as indicated by a high rank correlation (Spearman’s

r = 0.90 for fixed sampling and 0.91 for proportional sampling)

(Figure 3E). Like FASE distance error, the error of estimated

commitment time for progenitor states showed a strong nega-

tive correlation with their sampling fraction (Pearson’s R =

�0.97) (Figure 3F). In fact, when only considering progenitor

states with a sampling fraction above 0.25 (Figure 3F), ICE times

not only captured relative commitment times almost perfectly

(Spearman’s r = 1.00 for fixed and 0.99 for proportional sam-

pling) but also captured the exact timing of commitments as

indicated by a low root-mean-square error (RMSE = 0.31 days

for fixed and 0.27 days for proportional sampling) (Figure 3E).

These results establish ICE times as estimates for the commit-

ment times of the progenitor states from time-scaled phylog-

enies of sampled cells. They also demonstrate the central
Figure 3. Obtaining progenitor state commitment times, population

sampled cells

(A) Phylogeny in Figure 2B with internal nodes colored according to their inferred

(B) A subtree from (A) where each internal node is labeled by its inferred progeni

(C) The tree in (A) with nodes inferred as iP5 (orange) and iP8 (pink) labeled. Dark

(D) Boxplots showing the distribution of ICE times for all inferred progenitor states

iP8 are boxed in red.

(E) Scatterplots showing the correlation between true commitment time of each pr

simulated phylogenies broken down by sampling strategy. Dot colors represent p

value respectively show trendlines (LOESS) and Spearman’s r for progenitors w

tion < 25% are shown in red. Spearman’s r for all progenitor states is shown in

(F) Scatterplot showing the error of inferred commitment time for progenitor states

fraction for all progenitor states in the panel (bottom). Error is the absolute value

dashed line shows sampling fraction cutoff of 0.25. Trendline (LOESS) is in blue.

(G) The edges and the nodes relevant to population size and commitment bias o

reconstructed fate map (right). Horizontal lines mark iP5 and iP8 commitment time

they represent, nodes based on their inferred progenitor state or terminal type, wit

divisions without commitment (self-renewal).

(H) Tally of edges and pre- and post-commitment nodes associated with iP5 (left)

clarity. The number next to each edge indicates howmany times the combination

boxes on top indicate the nodes that were counted toward progenitor state popula

for commitment bias. The number next to each gray box indicates the total count

added to relevant tallies from the inset. Color key same as (G).

(I) Barplots showing the estimated population size of each inferred progenitor sta

(J) Stacked barplots showing the estimated post-commitment population size o

downstream state they lead to. Red boxes mark estimates relevant to iP5 and iP

(K and L) Scatterplots showing the correlation between true and estimated popula

and proportional sampling (right) across all 3,310 simulated phylogenies. Other p

See also Figure S3.
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importance of progenitor state sampling fraction for obtaining

reliable estimates.

Estimating progenitor state population size and
commitment bias from cell phylogeny
We next leveraged both fate map topology and commitment

times to estimate population sizes and commitment biases of

progenitor states. We identified the subset of all edges in the

phylogeny that (1) cross the progenitor state’s commitment

time and (2) connect nodes assigned as either the progenitor

state itself or any of its upstream or downstream states in fate

map topology (Figures 3G and 3H; STAR Methods). These

branches represent cells of the progenitor state that are present

at its estimated commitment time. We thus counted the number

of incoming nodes to these branches as the population size

(Figures 3H and 3I). For commitment bias, we calculated the pro-

portion of these branches that end in each of the downstream

fates irrespective of their parental state (Figures 3H and 3J).

Applying this algorithm to the 3,310 simulated time-scaled phy-

logenies, we found that the ability to estimate population size

and commitment bias for a progenitor state depends heavily

on its sampling fraction as well as the sampling method. For

well-sampled progenitor states (sampling fractionR 0.25), pop-

ulation size estimates agree well with their true sizes (Spear-

man’s r = 0.98 for fixed and 0.90 for proportional sampling) (Fig-

ure 3K). For undersampled progenitor states, a progenitor

population’s size estimate is capped at the number of its

sampled terminal progeny, which is reasonably informative in

proportional sampling (Spearman’s r = 0.78) but uninformative

in fixed sampling (Spearman’s r = 0.06) (Figure 3K). For commit-

ment bias, proportional sampling produced good estimates for
sizes, and commitment biases from time-scaled phylogeny of

progenitor state. Color key in Figure 2E.

tor state or terminal type. Asterisks signify ICE nodes.

er shades of orange and pink mark the nodes that are also ICEs.

in the tree in (A), representing their commitment times. The ICE times for iP5 and

ogenitor state to the value estimated from the phylogenetic tree across all 3,310

rogenitor states’ sampling fractions based on the key on the right. Blue line and

ith sampling fraction R 25%. Those for progenitor states with sampling frac-

black. Black lines are y = x.

as a function of their sampling fraction (top) aligned to a histogram of sampling

of the difference between estimated and true commitment times. The vertical

f iP5 and iP8 are shown on the tree from (A) (left) aligned to the corresponding

s. Edges in the phylogeny are classified and colored based on the commitment

h the fate map serving as the color key. Circular arrows on the fate map indicate

and iP8 (right) from the phylogeny in (G), a part of which is magnified for added

of incoming and outgoing progenitor state or terminal type was observed. Gray

tion size; gray boxes on the bottom indicate post-commitment nodes counted

of nodes in that box. Arrows from (G) inset show in parentheses counts being

te in (A). Red boxes mark iP5 and iP8 estimates from (H).

f each inferred progenitor state in (A), stacked and colored according to the

8. Colored according to Figure 2E.

tion size (K) and commitment bias (L) of inferred progenitor states in fixed (left)

lot features identical to (E).
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the well-sampled progenitor states (Spearman’s r = 0.83) and

reasonable estimates for the undersampled ones (Spearman’s

r = 0.72). (Figure 3L). Fixed sampling produced good estimates

only for well-sampled progenitor states (Spearman’s r = 0.82)

and was almost uninformative for undersampled ones (Spear-

man’s r = 0.15) (Figure 3L). Consistent with these results,

average population size and commitment bias estimate errors

approach zero as sampling fraction approaches one

(Figures S3H and S3I). The more effective estimation of popula-

tion size and commitment bias with proportional sampling is due

to the inherent correlation between the size of terminal popula-

tions, which proportional sampling captures, and that of their

progenitors. Taken together, these results establish a strategy

for estimating progenitor population size and commitment bias

from a time-scaled phylogeny of cells.

Modeling realistic lineage barcoding results in
development
So far, we have established a strategy—the ICE-FASE algo-

rithm—to reconstruct quantitative fate maps that describe pro-

genitor state hierarchy, commitment time, population size, and

commitment bias from time-scaled phylogenies. The phylog-

enies that were used thus far represent the exact sequence

and timing of cell divisions as simulated (i.e., true phylogeny).

In actual experiments, phylogeny must be inferred from lineage

barcodes, and such inferences are inherently subject to error

due to the limitations of both barcoding systems and computa-

tional techniques. Therefore, how close any inferred phylogeny

is to the true phylogeny remains uncertain. To address whether

quantitative fate maps can be obtained from inferred phyloge-

netic trees despite their uncertainty, we started by simulating

realistic lineage barcoding outcomes. To do so, we established

a mutagenesis model comprising independent barcoding sites

that accumulate mutations according to a Poisson point process

with a constant rate (Figures 4A and 4B). Eachmutation converts

an active copy of the site into one of many possible inactive

mutated alleles, each with a distinct emergence probability.

Next, we set the parameters of this model based on the

MARC1 system,5 wherein barcoding sites are homing guide

RNA loci (hgRNAs).29 We estimated the mutation rates of

MARC1 hgRNA from published embryonic time course mea-

surements30 (Figure S4A; Table S1; STAR Methods). We esti-

mated emergence probabilities of mutant alleles for

each hgRNA by modifying the inDelphi machine learning algo-

rithm,31 which predicts CRISPR-Cas9 mutations (Figure S4B;

STAR Methods). We validated the mutation model and its pa-

rameters by simulating barcoding in whole-mouse embryos

and comparing the results to that of actual MARC1 barcoded

embryos (STAR Methods). The comparison showed a broad

agreement between experimental and simulated barcoding

with respect to the emergence probability of mutant alleles, total

mutation levels over the course of embryogenesis, and the diver-

sity and composition of mutant alleles within an embryo

(Figures S4B–S4G). These results suggest that our strategy pro-

duces realistic barcoding results that are comparable to lineage

barcoding in mouse embryos.We thus simulatedmutagenesis in

our panel of 3,310 phylogenies with 50 hgRNAs per cell (STAR

Methods). These simulations yielded in silico barcoding experi-
ments wherein, similar to actual experiments, the barcodes

and terminal types are known for sampled single cells

(Figure 4C).

Inferring time-scaled cell phylogenies from single-cell
lineage barcodes using Phylotime
For quantitative fate mapping, the phylogenetic tree inferred

from lineage barcodes must be time-scaled. However, many

inference methods lack a mutagenesis model specific to lineage

barcoding, and thus their resulting phylogram branch lengths do

not represent interdivision times. Those with a barcoding muta-

genesis model32–34 require optimization techniques that do not

scale to thousands of cells, as sampled here in each simulated

experiment. Therefore, we developed a scalable method to infer

time-scaled phylogenies from lineage barcodes. In this method,

we first compute a maximum-likelihood estimate of the time that

separates a pair of cells from their most recent common

ancestor (time since MRCA) for all pairs of terminal cells (Fig-

ure 4D and S4H; STARMethods). We then apply UPGMA hierar-

chical clustering to the pairwise time since MRCA matrix to

obtain a time-scaled phylogenetic tree (Figure 4E). We call this

approach, which scales in polynomial time, phylogenetic infer-

ence using likelihood of time (Phylotime).

To evaluate Phylotime’s performance, we first compared esti-

mated times since MRCA for all pairs of cells from a simulated

barcoding experiment to those derived from the corresponding

true phylogeny (Figure S4I) and found that the two were highly

correlated (Pearson’s R = 0.93). We then simulated barcoding

with 25, 50, and 100 hgRNAs in all 530 simulated phylogenies

for the 16-terminal type fate maps and applied Phylotime to infer

phylogeny from each. For comparison, we also inferred phylog-

enies using a Hamming distance-based clustering method as

well as Cassiopeia,35 which is a heuristic approach based on

maximum parsimony (STAR Methods). Other common methods

do not scale well to this number of terminal cells (1,600) and bar-

coding sites (up to 100) in each experiment. We then evaluated

the difference between inferred phylogenies and their corre-

sponding true phylogenies using KC0 distance for topology

and KC1 distance for combined topology and branch length

(Figures 4F and 4G). KC0 results showed that Phylotime pro-

duced topologies that had on average 80% less error compared

to Cassiopeia and 6% less error compared to Hamming (Fig-

ure 4F). KC1 results showed that Phylotime’s time-scaled phy-

logenies had on average 82% less error compared to Cassiopeia

and 78% less error compared to Hamming (Figure 4G). Impor-

tantly, only Phylotime’s solutions converged to the true phylog-

eny with an increasing number of barcoding sites (Figure 4G).

Together, these results show that Phylotime can accurately infer

time-scaled phylogenies from lineage barcodes.

Reconstructing quantitative fate maps from lineage
barcodes
With realistic barcoding simulation and a method to infer time-

scaled phylogenies in hand, we finally assessed howwell lineage

barcodes can inform quantitative fatemaps.We applied the ICE-

FASE algorithm to all 3,310 Phylotime-inferred time-scaled phy-

logenies from experiments simulated with 50 hgRNAs to recon-

struct quantitative fate maps and compared these fate maps to
Cell 185, 4604–4620, November 23, 2022 4611



C

F G

ED
In

fe
rre

d 
to

po
lo

gy
 a

nd
 

br
an

ch
 le

ng
th

 e
rro

r (
KC

1)

Cassiopeia
Hamming
Phylotime

Number of sites

Terminal 
types

Si
ng

le
 c

el
ls

Barcoding sites

Mutant alleles Unmutated

Pairwise time since MRCA matrix

Time (days)
7 <7891011

yn
eg

ol
yh

p
de

rr
ef

nI

Time (day)
036912

Terminal 
types

Mut1Allele:
Probability:

Barcoding site
Unmutated

Mutation rate
)

Mutj
...
...a1

Mut2
a2

Mut3
a3

Mut4
a4

Mut5
a5 aj

BA

* * : Mutation event 

*
*

*
* *

**

Single barcoding site

Ti
m

e

m–n
time
since
MRCA

m n

Number of sites

In
fe

rre
d 

to
po

lo
gy

 e
rro

r 
(K

C
0)

0

2000

4000

6000

25 50 100
0

500

1000

1500

2000

25 50 100

Figure 4. Modeling barcoding mutagenesis and inferring time-scaled phylogenies from lineage barcodes using Phylotime

(A) Model of a barcoding site which mutates with a constant rate (l) to convert to one of many possible mutant alleles (Mut1; :::;Mutj ), each with an emergence

probability (a1; :::;a1).

(B) Example time-scaled phylogeny showing the inheritance of a single barcoding site. Rectangles represent the site; their colors represent its allelic state

according to (A). Asterisks denote mutation events. Only the unmutated allele (black) can change; mutated alleles (colored) are inherited from a cell to all its

descendants. The time since MRCA is shown for two terminal cells, m and n.

(C) Character matrix showing the output of a simulated barcoding experiment based on Figures 1A and 1B fate map with each barcoding site as a column and

each cell as a row. Unmutated alleles are in black; mutant alleles in other colors. Color bar on the right shows cell types with Figure 1A as color key.

(D) Heatmap showing the estimated pairwise time since MRCA for all cells in (C).

(E) Time-scaled phylogenetic tree inferred by applying Phylotime to (D). Colors of terminal nodes signify cell type.

(F andG) Error of phylogenetic inference using Phylotime (red), Hamming distance with UPGMA (green), and Cassiopeia (blue), with 25, 50, or 100 barcoding sites

when considering only tree topology (F) or tree topology and branch length (G) across the panel of 530 simulated barcoding experiments with 16 terminal types

(Mean ± SEM, n = 530; SEM very small).

See also Figure S4.
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those obtained by applying ICE-FASE to the true phylogeny.

Phylotime-inferred phylogenies performed almost as well as

true phylogenies at reconstructing fatemap topology, regardless

of fate map size and imbalance or sampling strategy (Figure 5A),

with 22% more error on average compared to the true phylog-
4612 Cell 185, 4604–4620, November 23, 2022
eny. Similarly, for commitment times, population sizes, and

commitment biases of progenitor states, Phylotime-inferred

phylogenies performed similarly to true phylogenies in all condi-

tions, recovering on average 95%, 80%, and 76% of the corre-

lation, respectively (Figure 5B). Taken together, these results
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Figure 5. Quantitative fate map reconstruction from lineage barcodes using Phylotime and ICE-FASE

(A) Scatterplots showing error of fatemap topology reconstruction (KC0) after applying ICE-FASE to true (light blue) or Phylotime-inferred (dark blue) phylogeny as

a function of map imbalance for all 3,310 in silico barcoding experiments faceted by fate map size (columns) and sampling strategy (rows). The faded pink points

establish baseline error based on random topology reconstruction. Trendlines (LOESS) are shown.

(B) Barplots of Spearman’s correlation between true and estimated commitment (cmt) time, population (pop.) size, cmt bias for all progenitor states in 3,310

simulated experiments, faceted by sampling fraction (columns) and sampling strategy (rows). Values from true phylogenies are shown in light blue and those from

Phylotime-inferred in dark blue.

(C–F) Lineplots showing the performance of quantitative fate map reconstruction as a function of the number of replicates combined when sampling 50 (green),

100 (orange), or 200 (purple) cells on average from each terminal type in the panel of 16-terminal type fate maps, measured by the error of topology (C), cmt time

(D), pop. size (E), and cmt bias (F) estimates (Mean ± SEM; n = 106).

(G–I) Same as (D)–(F), but estimates separated for well-sampled (solid lines) and undersampled (dotted lines) progenitor states.

See also Figures S4, S5, and S6.
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show that quantitative fate maps can be faithfully reconstructed

based on time-scaled phylogenies inferred using Phylotime

despite errors inherent to phylogenetic inference.

Effect of barcoding site composition, experimental
errors, and sampling time on quantitative fate mapping
We next analyzed how the number and themutation rates of bar-

coding sites affect the ability to reconstruct quantitative fate

maps from lineage barcodes. On the panel of 3,310 true phylog-
enies, we repeated barcoding simulation with 25, 50, or 100

hgRNAs per cell mutating at fast, intermediate, or slow rates,

as observed in MARC1 hgRNAs (Figure S4A). We then applied

Phylotime followed by ICE-FASE to these 29,790 simulated ex-

periments to obtain quantitative fate maps. To assess these

maps, we instituted a general evaluation strategy that will also

be used in all later sections: we used KC0 error for topology;

we used the RMSEs of progenitor state commitment times,

log2(population sizes), and commitment biases irrespective of
Cell 185, 4604–4620, November 23, 2022 4613
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sampling fraction and based on the true topology (using imper-

fectly reconstructed topology would bias estimates in favor of

easily resolvable progenitor states) (STAR Methods). Note that

RMSE measures absolute error; experiments with relatively

high RMSEs often still have accurate relative ordering of progen-

itor state parameters. The analysis showed that very slow rates

of mutations (�0.002 mutations per site per division) cannot

resolve reliable quantitative fate maps under the conditions

tested here (Figure S4J). Though increasing the number of

slow-mutating sites increased reconstruction accuracy gener-

ally, indicating that the combined mutation rates of all sites ulti-

mately dictate reconstruction efficiency (Figure S4J). Intermedi-

ate rates of mutation (�0.05 per site) performed better than fast

mutation rates (�0.28 per site), as fast sites are more likely to re-

cord information only in the earlier days of development

(Figures S4D–S4F) and before many of the progenitor states

have come into existence (Figure S1D). Overall, these results

show that, for quantitative fate mapping, an adequate overall

level of mutagenesis must take place during the development

window of progenitor states.

We next considered two common modes of experimental

error: allele dropout and allele switching. We carried out simula-

tions with increasing levels of error in the resulting data and as-

sessed the fidelity of quantitative fate map reconstruction (STAR

Methods). For missing alleles, before applying Phylotime, we

imputed the missing alleles for each barcoding site sequentially

by leveraging information from all other sites (STAR Methods).

The results, which are detailed in Figures S5A–S5D, suggest

that, while the accuracy of estimates declines with increasing

experimental error, quantitative fate mapping algorithms can

tolerate errors and behave stably in response.

We also simulated sampling of terminal types 1–5 days after

the last commitment event (STAR Methods). The results, which

are detailed in Figures S5E–S5M, show that a progenitor field

may be assessed by sampling its terminal cell types or the de-

scendants of those terminal cell types at any time after its

development.

Cell death, non-random sampling, and asymmetric
divisions can empower quantitative fate mapping
Because cell death is a prevalent developmental control mecha-

nism,36 we carried out simulations with increasing rates of cell

death in either all terminal types or all progenitor states (STAR

Methods). As detailed in Figures S5N–S5S, we found that cell

death in progenitor states drastically improved estimates of

commitment time, population size, and commitment bias by bot-

tlenecking progenitor states to effectively increase their sam-

pling fractions. These results in turn suggest that non-random

sampling of terminal types can be employed to effectively bottle-

neck their progenitors and facilitate analyzing large progenitor

states. Conversely, cell death in terminal states did not signifi-

cantly alter reconstruction, suggesting that a progenitor state

may be analyzed using a subset of its downstream states

or types.

We also considered stereotyped cell fate commitment with

asymmetric cell divisions, which are common in the develop-

ment of the nervous system.37 We simulated barcoding experi-

ments on a pectinate 16-terminal type fate map (Figure 1C, bot-
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tom left) with commitments happening exclusively through

asymmetric divisions (STAR Methods). The results, which are

detailed in Figures S5T–S5Z, indicate that asymmetric divisions

facilitate quantitative fate mapping.

Consensus quantitative fate maps from multiple
biological replicates
We expanded the ICE-FASE algorithm to take advantage of mul-

tiple biological replicates assuming they have a common under-

lying fate map (STAR Methods). Briefly, to obtain consensus to-

pology from replicates, their FASE distance matrices were

averaged before applying the clustering algorithm (Figures 2D

and 2E). To obtain consensus commitment times, the consensus

topology was used to assign inferred progenitor states to each

replicate’s phylogeny, and ICE times of each progenitor state

were pooled from different replicates (Figures 3A–3D). To obtain

consensus population sizes and commitment biases, the

consensus commitment time for each progenitor state was

used to estimate its population size and commitment bias in

each phylogeny (Figures 3G–3K), and these estimates were

averaged to obtain respective consensuses.

We then assessed fatemap reconstruction accuracy based on

the number of replicates. For each of our 53 fate maps with 16

terminal types (Figure 1C), we simulated 10 replicates of barcod-

ing experiments each for fixed and proportional sampling with an

average of 50, 100, or 200 sampled cells per terminal cell type (53

maps 3 2 sampling schemes 3 3 sample sizes = 318 sets of 10

replicates). For each replicate, we applied Phylotime to obtain a

time-scaled phylogeny. We then randomly combined 1, 2, 3, 4,

or 5 of the 10 replicates to reconstruct consensus quantitative

fate maps and compared their accuracies. The results show

that additional replicates indeed reduce error of all quantitative

fate map estimates (Figures 5C–5F). However, the gains with

additional replicates are diminishing and do not converge to

zero error. This observation is best explained by undersampled

progenitor states whose estimates in each replicate can be

uninformative (Figure 5B). In fact, estimation error for the

well-sampled progenitor states approached zero with additional

replicates, while it did not for the undersampled ones

(Figures 5G–5I).

Importantly, the gains achieved by sequencing more cells per

replicate outweighed those achieved by combining more repli-

cates. For example, quadrupling the number of replicates from

one to four when sampling 50 cells decreased average error in

topology, commitment time, population size, and commitment

bias by 30%, 23%, 4%, and 3%, respectively (Figures 5C–5F).

By contrast, a quadrupling of the number of cells sequenced in

a single replicate from 50 to 200 decreased average error in to-

pology, commitment time, population size, and commitment

bias by 46%, 41%, 26%, and 12%, respectively (Figures 5C–

5F). These results suggest that limited resources can be better

spent on sequencing more cells per individual than a larger num-

ber of individuals.

Resolving multifurcations and prolonged commitments
Because some progenitor states undergo gradual commitment

during development, we simulated a progenitor state committing

over a 0.5-, 1.1-, or 1.7-day commitment window (STAR
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Methods). The results, which are detailed in Figures S6A–S6E,

indicate that the ICE-FASE algorithm can resolve progenitor

states that gradually commit over a window of time.

Because progenitor states in development may simulta-

neously commit to more than two immediate downstream states

or types, we simulated barcoding in a fate map where a progen-

itor state undergoes trifurcation (STAR Methods). The results,

which are detailed in Figures S6F–S6L, show that the ICE-

FASE algorithm can resolve multifurcations in fate maps given

adequate sampling.

Assessing robustness of quantitative fate map
estimates from experimental data with PScov
Despite its central importance in evaluating the robustness of

quantitative fate map reconstruction, progenitor state sampling

fraction cannot be directly obtained from sampled terminal cells

or their phylogeny. To address this gap, we introduce estimated

progenitor state coverage (PScov), a proxy for sampling fraction

that can be derived from sampled cells alone. PScov is defined

as the number of observed terminal progeny for a progenitor

state divided by its estimated population size (Figure 6A). Intui-

tively, this statistic indicates how many terminal descendants
were sampled per inferred progenitor cell. We found that a

high PScov is indeed predictive of a high sampling fraction (Fig-

ure 6B). For example, in our 3,310 simulated experiments, 69.8%

of all progenitor states that are sampled more than 25% also

have a PScov larger than 5, and more than 99.9% of progenitor

states with PScov larger than 5 have sampling fractions larger

than 25% (Figure 6C). Moreover, average commitment time,

population size, and commitment bias errors approach zero

with increasing PScov (Figures 6D–6F). Therefore, PScov makes

it possible to assess the robustness of quantitative fate map pa-

rameters for each progenitor state in actual experiments.

Experimental validation of quantitative fate mapping
To test this quantitative fate mapping framework, we used an

experimental system in which quantitative fate map parameters

can be known. We established a human induced pluripotent

stem cell (iPSC) line with 32 hgRNA barcoding sites (Table S2;

STARMethods). The line also includes inducible Cas9 to activate

barcoding. 24 of the 32 hgRNAs were determined to be active

and accumulated random mutations upon Cas9 induction (Fig-

ure S7A). We then designed growing and splitting schemes in

culture that mimic progenitor state hierarchies (Figure 7A). In
Cell 185, 4604–4620, November 23, 2022 4615
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two parallel experiments, starting from single cells, we initiated

barcoding and passaged growing cells into subpopulations at

known times, numbers, and split ratios (Figure 7B, S7B, and

S7C). The two experiments were similar except that in one

(E1), progenitor state 3 (P3) was split 2 days before progenitor

state 4 (P4), whereas in the other (E2), P4 was split 2 days before

P3. In effect, the last populations of split cells in these experi-

ments represent terminal cell types, and their ancestral popula-

tions represent progenitor states. In the end, we sequenced

barcodes from 192 single cells in each terminal population

(STARMethods). After data processing, we obtained on average

158 cells per terminal population with a median of 26 hgRNAs

detected per cell (Figure 7C, S7D, and S7E). We also conducted

simulations on the E1 and E2 reference fate maps (Figure S7B)

with cell division rates derived from the actual progenitor popu-

lation sizes at each split and hgRNA mutation rates (Figure S7C)

and allele emergence probabilities respectively obtained from

time coursemeasurements and inDelphi predictions (Figure S7F;

Table S2). We applied Phylotime and ICE-FASE to both simu-

lated and experimental data. The experimental data recon-
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structed the topology correctly for both E1 and E2 (Figure 7D),

and so we refer to the inferred states by their true state names

hereafter. In addition to the correct topology, the inferred fate

maps recovered the correct orders of commitment in both ex-

periments (Figure 7D), including the relative commitment times

for P3 and P4, which were switched between E1 and E2. This

result suggests that our strategy can identify quantitative fate

map differences in different systems.

PScov ranged from 1.68 to 2.36 in all progenitor states other

than the founder (P5), indicating that they were highly under-

sampled. As such, we did not expect to recover the exact

commitment times and population sizes of the passaged inter-

mediate populations. Nevertheless, we evaluated whether these

estimateswould approach the truthwith increased sampling.We

repeated quantitative fate map reconstruction 50 times each

with varying numbers of terminal cells subsampled from the total

sequenced population. In parallel, we carried out simulations

with the same subsample sizes on reference fate maps. We

then classified inferred fate maps based on their topology and

correctness of relative ordering (Figure S7G) and found that the
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fraction of correct topology and relative order of commitment

increased in a similar fashion with increasing sampling in both

the simulated and experimental datasets. Additionally, commit-

ment time and population size estimates for P3 and P4 ap-

proached their true values with increasing sampling in simulated

and experimental sets alike (Figures S7H and S7I; Figure S8A).

Together, these observations validate our barcoding models

used for simulation and suggest that our quantitative fate map-

ping strategy, ICE-FASE, and Phylotime are robust to natural

variations in cellular behavior.

DISCUSSION

In this study, we have established a robust and versatile

approach, called quantitative fate mapping, to use cells’ lineage

barcode and identity information to retrospectively characterize

the progenitor field that gave rise to them. Quantitative fate map-

ping involves two stages. The first stage entails inferring a time-

scaled phylogenetic tree from single-cell lineage barcodes. To

do so, we have developed Phylotime, which scales to large trees

with thousands of terminal branches. Moreover, its mutagenesis

model can be adapted to other systems with multiple indepen-

dent mutation sites such as natural somatic mutations. The sec-

ond stage entails reconstructing the hierarchy of progenitor

states that led to the observed cell types and estimating their

commitment times, population sizes, and commitment biases.

To do so, we have developed the ICE-FASE algorithm, which

uses nodes in the time-scaled phylogenetic tree that are associ-

ated with fate decisions as chronometers of progenitor popula-

tion dynamics. While other studies have focused on reversible

cell-state transitions,38 non-cumulative barcoding,15,39 or single

progenitor states,34,40 our approach is unique in that it evaluates

the dynamics of progenitor states using cumulative somatic mu-

tations, scales to large and complex progenitor fields, and can

tolerate the errors that are inherent to phylogenetic inference.

The choice of terminal cell types decides the progenitor

states that are analyzed in a quantitative fate map. As a simpli-

fied example, taking ectoderm-derived neurons, mesoderm-

derived myocytes, and endoderm-derived hepatocytes in adult

mice as terminal cell types would analyze their common pro-

genitor states prior to gastrulation. Therefore, quantitative fate

mapping provides a unique approach to characterize develop-

ment based on differentiated cells. This strategy complements

those based on the direct analysis of progenitor cells (e.g., sin-

gle-cell RNA sequencing)41 in multiple ways. Firstly, it provides

information about the long-term fate of progenitors. Secondly,

it enables analyzing progenitor states with respect to specific

subsets of their progeny, which may be of interest, for example

due to relevance to a specific disorder. Finally, it can be applied

to non-model species wherein accessing somatic mutations

from cadavers is more practical than obtaining embryos.

Our results show that only when a progenitor state is suffi-

ciently sampled can its potency and dynamics be meaningfully

estimated in one individual and improved by combining biolog-

ical replicates; estimates for severely undersampled progenitor

populations are not meaningful irrespective of the number of

replicates. In cases modeled here, adequate sampling often

required more than 25% of the actual progenitor population to
have descendants among sampled terminal cells (PScov > 5).

To meet this sampling criterion in practice, the number of

descendants that are analyzed should be, at least, in the same

order as the actual progenitor population size. We propose this

as a fundamental rule for retrospective lineage analysis. For pro-

hibitively large progenitor populations, this sampling rule may be

satisfied by bottlenecking the number of sampled progenitors

using non-random sampling of terminal cells based on anatom-

ical position or other criteria.

In summary, we have described quantitative fate mapping as

a framework to characterize complex cell fate dynamics during

development using retrospective lineage analysis at a later

point in time. This framework is based on somatic muta-

tions—synthetic or natural—that accumulate during develop-

ment. Robust fate mapping requires good representation of

each progenitor population among sampled cells as well as

the ability to infer time-scaled phylogenetic trees. This frame-

work facilitates the characterization of cell-autonomous and

non-cell-autonomous genetic and environmental effects on

development.

Limitations of the study
The parameters of our models were tailored to mouse embryo-

genesis. Hence, certain thresholds and cutoffs associated

with specific conclusions may be different in later stages of

development, other species, and other developmental systems

such as organoids. In such cases, the simulation strategies

described here can be employed to obtain system-specific

values. Our models assume lineage-independent rates of muta-

genesis. While this assumption is supported as a first-order

approximation,5,42 we expect our strategy to be robust to small

lineage biases in mutation rates. We have not performed exper-

imental validation of this framework in a model organism, which

may reveal factors that were not considered here and require ad-

justments to ICE-FASE and Phylotime strategies.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Bacterial and virus strains

AAVS1-Neo-M2rtTA DeKelver et al.43 Addgene Cat#60843

Chemicals, peptides, and recombinant proteins

Accutase� STEMCELL Technologies Cat#07920

Antibiotic-Antimycotic (100X) ThermoFisher Cat#15240062

Blasticidin S hydrochloride MilliporeSigma Cat#15205

(�)-Blebbistatin MilliporeSigma Cat#B0560

CloneR STEMCELL Technologies Cat#05888

Doxycycline hyclate MilliporeSigma Cat#D9891

DreamTaq Hot Start PCR Master Mix ThermoFisher Cat#K9012

Geneticin� Selective Antibiotic (G418 Sulfate) ThermoFisher Cat#10131035

KAPA HiFi HotStart ReadyMix Roche Cat#07958935001

KAPA SYBR FAST qPCR Kits Roche Cat#07959389001

Lipofectamine� Stem Transfection Reagent ThermoFisher Cat#STEM00001

Matrigel Growth Factor Reduced Basement

Membrane Matrix

Corning Cat#354230

mTeSR� Plus STEMCELL Technologies Cat#100-0276

Opti-MEM I Reduced Serum Media ThermoFisher Cat#31985062
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Puromycin dihydrochloride MilliporeSigma Cat#P8833

QuickExtract� DNA Extraction Solution Lucigen Cat#QE09050

SYBR Green I Nucleic Acid Gel Stain ThermoFisher Cat#S7563

Critical commercial assays

DNA Clean & Concentrator-5 Zymo Research Cat#D4014

MiSeq Reagent Micro Kit v2 (300-cycles) Illumina Cat#MS-103-1002

MycoAlert� PLUS Mycoplasma Detection Kit Lonza Cat#LT07-701

Qubit dsDNA HS Assay Kit ThermoFisher Cat#Q32851

Deposited data

Single-cell hgRNA sequencing raw FASTQ files for

E1 and E2

This study SRA: SRP386685

MARC1 sequencing data for determining hgRNA

mutation rates

Kalhor et al.5;

Leeper et al.30
SRA: SRP155997

All quantitative fate maps This study Zenodo: 10.5281/zenodo.7112097

inDelphi predicted mutant allele probabilities for

hgRNAs in MARC1 mice and iPSC line

This study Zenodo: 10.5281/zenodo.7112097

Simulated phylogenies, sets of MARC1 hgRNAs used,

single cell lineage barcodes, Phylotime reconstructed

phylogenies for all experiments

This study Zenodo: 10.5281/zenodo.7112097

Experimental models: Cell lines

iPSC line: EP1-Cas9-hgRNA This study N/A

Oligonucleotides

See Table S3 for oligonucleotides used in this study. This study N/A

Recombinant DNA

Modified pSpCas9(BB)-2A-Puro (PX459) V2.0 Eldred et al.44 N/A

Modified Puro-Cas9 donor Eldred et al.44 N/A

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

PB-U6insert hgRNA library Kalhor et al.5 Addgene Cat#104536

PB-U6insert-EF1puro library Kalhor et al.5 Addgene Cat#104537

Super piggyBac Transposase expression vector System Biosciences Cat#PB210PA-1

Software and algorithms

Cassiopeia Jones et al.35 Github: https://github.com/YosefLab/Cassiopeia

ICE-FASE This study Github: https://github.com/Kalhor-Lab/QFM/; Zenodo:

10.5281/zenodo.7114804

ImageJ Schneider et al.45 Github: https://github.com/imagej/ImageJ

InDelphi Shen et al.31 Github: https://github.com/maxwshen/inDelphi-model

Phylotime This study Github: https://github.com/Kalhor-Lab/QFM; Zenodo:

10.5281/zenodo.7114804

MARC1 analysis pipeline Leeper et al.30 Github: https://github.com/Kalhor-Lab/MARC1-Pipeline
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Reza Kal-

hor (kalhor@jhu.edu).

Materials availability
The human induced pluripotent stem cell line generated in this study will be shared upon request.

Data and code availability
d FASTQ files from sequencing single-cell hgRNA arrays have been deposited at SRA and are publicly available. Accession

numbers are listed in the key resources table. All quantitative fate maps, simulated datasets, inDelphi predictions, and Phylo-

time-reconstructed phylogenies have been deposited on Zenodo. DOIs are listed in the key resources table.

d R package for QFM and code to reproduce the results is publicly available at https://github.com/Kalhor-Lab/QFM/ as of the

date of publication.

d Any additional information required to reanalyze the data reported in this paper is available from the Lead Contact upon

request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell culture
Human iPSCswere cultured inmTeSRPlusmedia (STEMCELL Technologies) on plates coatedwithMatrigel Growth Factor Reduced

Basement Membrane Matrix (Corning). Cells were maintained at 37�C and 10% CO2/5% O2 conditions with daily media changes.

When up to 80% confluent, cells were passaged by dissociation with Accutase (STEMCELL Technologies) and seeded in mTeSR

Plus media supplemented with 5 mM blebbistatin (Millipore Sigma).

Lineage-tracing human induced pluripotent stem cell line
We established a clonal iPSC line with 32 hgRNA barcoding sites distributed in its genome as a non-tandem array. The line also in-

cludes doxycycline inducible Cas9 to activate barcoding. The EP1 human induced pluripotent stem cell (hIPSC) line was obtained

from Bhise et al.,46 originating from fetal lung fibroblasts obtained from a female donor. A clonal lineage-tracing inducible Cas9

cell line was generated by first transfecting the EP1 cells with plasmids to target and stably insert both a reverse tetracycline-

controlled transactivator (rtTA) construct and a tetracycline-dependent Cas9 construct into each of the two copies of the AAVS1

safe harbor locus. The cells were then transfected with a hgRNA PiggyBac library and screened for high numbers of insertions. A

KaryoStat Assay of the final engineered cell line confirmed that the sample originated from a female and had no chromosomal ab-

errations when comparing against the reference dataset. Cells were determined to be free of mycoplasma contamination based on

MycoAlert PLUS Mycoplasma Detection Kit (Lonza) test results.
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METHOD DETAILS

Definition of quantitative fate map
A quantitative fate map (QFM) is characterized by a topology in the form of a bifurcating or multifurcating time-scaled tree. Each node

in the tree is associated with a time, with the root node at time 0 and the terminal nodes at time of sampling. Each edge in the tree

represents a progenitor state or terminal type, the starting and end time of the edge represent the duration for which the state existed.

If an edge ends at the sampling time, it is a terminal type, otherwise a progenitor state. For progenitor states, the end node of the edge

represents a commitment event. For terminal types, the end node of the edge represents the time at which the process is stopped for

sample collection. For a bifurcating QFM with Z total terminal types, we denote the progenitor states as Pi; i = 1;2;.; ðZ � 1Þ and
the terminal types as Tj; j = 1; 2;.;Z. Each progenitor state or terminal type has a set of parameters associated with it. We take a

progenitor Pi as an example here. Along the edge representing Pi, cells undergo cell division and cell death at rates specific to the

state. The doubling time for Pi is denoted dPi. When not committing, cells can be (i) dividing (ii) not dividing, or (iii) dying with prob-

abilities cPi;D, cPi;N or cPi;L respectively. These probabilities are specific to the progenitor state. At the commitment time for Pi, denoted

tPi, the cells commit to the downstream states. For a bifurcating commitment event, when cells of the Pi state commit to the down-

stream states, say Pj or Pk, it can do so via either via symmetric cell division or asymmetric cell division. For commitment via sym-

metric cell division, each cell of the Pi state gives rise to either two Pj cells or two Pk cells. For commitment via asymmetric cell di-

vision, each cell gives rise to two cells of different downstream states, that is, one cell Pj cell and one Pk cell. The corresponding

commitment mode probabilities are denoted ðpPjPj;pPkPk ;pPjPkÞ, where pPjPj and pPkPk are the probabilities of the symmetric modes

that commits to Pj or Pk respectively and pPjPk is the probability of the asymmetric mode. The commitment bias is defined as the

proportion of cells of each of the downstream states that are produced. In the above example, the commitment bias, denoted as

bPi is
�
2pPjPj +pPjPk ; 2pPkPk +pPjPk

�
. In most fate maps simulated here, pPjPk = 0 as they did not include a specific asymmetric division

mechanism. For the purpose of evaluation, for each bifurcating progenitor state, the proportion that commits to one of the two down-

stream states is chosen as a single value representing the progenitor state bias and is kept track of consistently throughout. The pro-

genitor population size NPi is defined as the number of cells at the commitment time.

Definition of time-scaled phylogeny
A time-scaled phylogeny is defined as a rooted, ultrametric, bifurcating phylogenetic tree where branch lengths are in the unit of time

and represent the time in between cell divisions. Terminal nodes, or tips, of the tree represent observed cells. Internal nodes in the

time-scaled phylogeny represent cell divisions of unobserved progenitor cells. The root node represents the most recent common

ancestor (MRCA) of all terminal cells. The length of the root edge is the time until the cell division of the root MRCA. Cophenetic dis-

tance is defined for each pair of terminal cells, which is the distance between the cells along the phylogenetic tree. The depth of a

node in the phylogenetic tree is defined as the distance of a node to the root plus the length of the root edge. The ultrametric property

requires that all tips are equidistant from the root, that is, have the same depth. The total time of a time-scaled phylogeny is defined as

the depth of its tips.

Constructing a panel of quantitative fate maps
Generating each fate map in our panel involved several interrelated and iterative steps. These steps were designed to ensure that the

fate maps in the panel explore a wide range of possibilities in terms of topology and progenitor state parameters while making sure:

(i) the fate map generated resembles early mouse development (ii) the commitment events are placed within our prespecified time

window (½2:4; 10:9� days) (iii) two consecutive commitment events are at least one doubling time apart. For clarity, these steps are

briefly listed here and detailed separately below. First, a candidate topology in the form of a bifurcating tree was generated from

one of five categories of varying imbalance. Edges in the bifurcating tree represent progenitor states and terminal types; nodes in

the tree represent their commitment events. Second, an ordering of the commitment events was generated. Third, doubling times

of progenitor states were drawn, leading to a candidate fate map. Fourth, the timing of commitment events in the candidate fate

map was checked against the minimum inter-commitment time and total span criteria. If the candidate fate map met these criteria,

it was accepted and its commitment biases and death rates were drawn. Otherwise, a perturbation to the candidate topology was

suggested, and steps one through four were repeated until a valid fate map emerged.

Generating candidate topologies

To generate a panel of fate map topologies with varying levels of imbalance, tentative tree topologies were generated from five

different categories: (i) ‘perfectly balanced’ (ii) ‘balanced-TBR’ (iii) ‘random’ (iv) ‘pectinate-TBR’ (v) ‘pectinate’. In the perfectly

balanced topology, each bifurcation splits all terminal types into two equal halves. The balanced-TBR topologies are generated

by applying one randomTBRmove to the perfectly balanced topology. The random topologies are generated by creating a sequence

of bifurcations, each randomly splitting the set of terminal types into two sets; the ‘rtree’ function in the ‘ape’ R package47 was used to

generate the random topologies. The random category tends to have topologies of medium balance. The pectinate topology is in the

shape of a comb. In pectinate topology, each bifurcation always splits the terminal types such that one of the splits has exactly one

terminal type (Figure 1C, bottom left). The pectinate topology is the maximally unbalanced topology for a fixed number of terminal

types. The pectinate-TBR topology is generated by applying a number of TBR moves to the pectinate topology.
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Generating event ordering

In the second step, we generated an ordering of commitment events following a previously published method.48 Briefly, to get an

ordering of events in the entire topology, a ‘shuffling’ at each bifurcation was generated. A shuffling orders the events between

two subtrees of a bifurcation without ordering within each subtree. For example, two shufflings of a given event are illustrated in Fig-

ure S8A. Events from the left subtree are shown as hollow circles and events from the right subtrees are shown as solid ones. The

sequence of solid and hollow circles is defined as a shuffling at the bifurcation. A set of shufflings for every bifurcation (internal node)

of a tree determines the exact ordering of its commitment events.

Generating doubling times and exact commitment times

Given the event ordering, doubling times for each state/type are drawn. To have overall agreement with the mouse development but

also allow variabilities across cell states/types, the following scheme was used. The root state has a doubling time of 0.6 days. All

other progenitor states have the doubling time drawn from a uniform distribution whose center is determined by the time ranking

of its commitment event. Specifically, for an event ranked i-th out of total I � 1 commitment events, the doubling time follows the

uniform distribution below:

dðiÞ � Uniform

�
0:5 � ði � 1Þ � 0:55 � 0:4

I � 2
;0:6 � ði � 1Þ � 0:55 � 0:4

I � 2

�
For example, for a 16-terminal type fate map, the earliest commitment non-root progenitor state has doubling time sampled from

Uniformð0:49;0:59Þ and the latest committing progenitor state has doubling time sampled from Uniformð0:35; 0:45Þ. For all terminal

types, the doubling time is sampled from Uniformð0:35;0:45Þ (Figures S1F and S1G). These doubling rates generally agree with rates

reported in the literature.23

Next, we generated the duration between consecutive events in the commitment event ordering. In our model,

consecutive commitment events were required to be at least one cell division (doubling time of the earlier state) apart. In addition,

all of the commitment events need to fit in a predefined time window ½l0; l1�. These requirements place constraints on the duration

in between commitment events. Such a constraint can be formalized as follows:

Suppose there are I total events, where the duration between the ði � 1Þ-th and i-th event in the event ordering is yi. Let the

doubling time of progenitor state i be di, then for an edge in the fate map topology that connects the earlier event j to the later event

k, we have  Xk
i = j + 1

yi

!
� dj R0 and yi R0

There are I � 1 total such constraints, one for each edge that is not the root edge. Next, we used linear programming to find the

vector ofyi’s such that
P
i

yi is minimized, the minimum value of
P
i

yi is denoted ytotal. When generating the event timing, we tried to

place the events within the given time window: ½l0; l1�with its total length being ltotal = l1 � l0. For a valid placement of events to exist,

one needs to have ytotal % ltotal. At this stage, we checked if this condition is met. If it was not, the current value of ytotal was recorded

and the candidate fate map topology is perturbed by applying one tree bisection and reconnection (TBR) move. TBR is a tree rear-

rangement that detaches a subtree from the main tree at an interior node and then reconnects to another random branch. After the

TBR move, all the above steps were repeated and a new ytotal values was computed, denoted ytotal
0
. If ytotal

0
< ytotal, then the newly

perturbed topology was accepted as the tentative fate map topology. Otherwise, the newly generated perturbation was discarded,

and another perturbation was generated. The process was repeated until a ytotal % ltotal was found. With the new ltotal found, we tried

to place events uniformly within the time window by distributing the remaining duration ztotal = ltotal � ytotal to each interval evenly,

which was achieved by sampling from the following Dirichlet distribution:�
z1
ztotal

;
z2
ztotal

;.;
zI� 1

ztotal

�
� Dirichletð5; 5;.;5Þ

Finally, the commitment time for the u-th event is l0 +
Pu
i = 1

ðyi + ziÞ (Figure S1D).

Generating commitment bias and death rate

The raw commitment biaseswere drawn fromBetað5;5Þ, the raw valueswere later adjusted to actual values based on howmany cells

were split into each of the downstream fates. For example, when the progenitor population had 13 cells, and the raw commitment

bias was ð0:63; 0:37Þ based on which ½1330:63� = 8 cells are committed to one downstream fate versus ½1330:37� = 5 cells to

the other, with ½:� being the rounding operation that rounds to the nearest integer. Then the actual commitment bias was adjusted

to ð8=13;5=13Þ. We required that there are at least 4 cells committing to each downstream fate, this requirement resulted in the

commitment bias to be closer to 0.5 for smaller progenitor populations (Figure S1E). The cell death rates were drawn

from Uniformð0:02; 0:08Þ.
Generating the panel of fate maps

The balance of a fate map topology can be measured by the Colless index. The Colless index of a bifurcating tree is defined as the

sum of the balance values of its internal nodes, where the balance value of an internal node is defined as the absolute value of the

difference between the number of descendant tips of its pair of daughter nodes.22 To get a representative panel of fate maps
e4 Cell 185, 4604–4620.e1–e16, November 23, 2022



ll
Theory
topologies in terms of balance, we generated 1,000 fate maps based on topologies from the balanced-TBR, random and pectinate-

TBR categories with either 16, 32 or 64 terminal types. After computing the Colless index for each topology, we classified the

generated topologies into bins of different Colless index values by increments of 20. Next, within each bin, we randomly selected

five (or fewer in bins with fewer than five in total) fate maps (Figure S1C). Finally, we add to this list the perfectly balanced topology

and the pectinate topology. Note that because of the constraints of the minimum duration in between consecutive commitment

events and the doubling times specified, the pectinate topology does not allow a valid placement of commitment events within

the ½2:4; 10:9� time window for the fate maps with 32 and 64 terminal types, so it was only added in the case of 16 terminal types.

The above procedure produced 53 fate maps with 16 terminal types, 108 fate maps with 32 terminal types and 170 fate maps

with 64 terminal types. To see if the steps used here generated topologies that show good variabilities, we embedded the tree to-

pologies into the 2-dimensional space by applying multi-dimensional scaling to the pairwise KC0 distances. In the embedding, we

observed that the first principle coordinate correlated well with the Colless index, and in addition, the second principle coordinate

also had good variations, indicating that our topologies cover a range of possibilities (Figures S1A and S1B).

Generating a count graph for QFM
To carry out computation and generate time-scaled phylogenies from aQFM, an abstract count graph was constructed based on the

QFM’s specifications, which is a detailed representation of the computations involved (Figure S2).

Each node in the count graph contains a group of cells. To distinguish the terms, we call a node in the count graph a ‘count node’. In

addition to containing cells, each count node has other relevant attributes. It has a timewindow,which specifies the time duringwhich

its cells exist, it also has a state/type assignment, which specifies which progenitor state or terminal type its cells belong to. Gener-

ating a count graph for a QFM starts at its root (t = 0) with a single count node. The count nodes in the next time window are gener-

ated by applying four operations (which are indicated by bold font in text below) to the starting count node and its cells according to

the QFM specifications to generate the count node(s) at the next time window. This process is then repeated on the nascent count

nodes one round after the other until the entire count graph is created. The detailed implementation of each operation is given in the

later section (Figure S2, Step 1).

During each time window, which is the length of a cell cycle, based on if the commitment time of the progenitor state has been

reached in the QFM, each count node undergoes one of two processes before creating count node(s) in the next time window:

1. a proliferate-only process

2. a commit and proliferate process

Initially, the count node is in a ‘‘default’’ mode (labeled T), representing its total population of cells during the time window. If un-

dergoing process 1 (proliferate-only), the count node is split into three sub-count nodes that represent cells that are (i) doubling

(labeled D) (ii) not doubling (labeled N) or (iii) dying (labeled L). Specifically, cells (of cell state Pi) with N totals cells are split into three

sub-count nodes of different proliferation modes, according to probabilities cD;Pi, cN;Pi and cL;Pi. Here, the split operation splits a

count node into three sub-count nodes:

ðND;NN;NLÞ = split ðN; ðcD;Pi; cN;Pi; cL;PiÞ;mD = mP = mL = 0 Þ; cD;Pi + cN;Pi + cL;Pi = 1
where ND;NN;NL are the counts of the sub-count nodes, cD;Pi; cN;
Pi; cL;Pi are the doubling, non-doubling and dying probabilities, and

mD, mN and mL are the minimum number of cells in each sub-count node after the split.

Then, the doubling sub-count node doubles in number and is merged with the non-doubling sub-count node to give rise to the

default count node of the next time window, which starts one doubling time dPi later than the current time window. The dying

sub-count node is lost in the process. The double operation doubles the count, and the merge operation adds up the counts of

sub-count nodes.

If undergoing process 2 (commit and proliferate), cells in the default count node are first split into one of the commitment modes

and subsequently double or asymmetric double depending on which commitment mode they are assigned to in the QFM. The

asymmetric double operation originates from a sub-count node and gives rise to two sub-count nodes of the same size but are

of two different downstream states/types. Suppose cells (of some progenitor state Pi) are committing during a time window to

two downstream fates Pj and Pk, then the count node in default mode gets split into three sub-count nodes of different commitment

modes. There are three different commitment modes when commitment is a bifurcation: two symmetric commitment modes Pi-PjPj

and Pi-PkPk (one each for the two downstream fates) and one asymmetric commitment mode Pi-PjPk . Cells in one of the two sym-

metric commitment modes each gives rise to two cells of the same downstream types. Cells in the asymmetric commitment mode

each gives rise to two cells of two different downstream types. Let the probabilities of the two symmetric commitmentmodes be pPjPj,

pPkPk and the probabilities of the asymmetric commitment mode be pPjPk . Specifically, during a time window when cells are in pro-

cess 2 (commit and proliferate), when there are N cells in the default count node, the cells are split into the commitment sub-count

nodes via the split operations:

ðNPjPj;NPkPk ;NPjPkÞ = split
�
N;
�
pPjPj;pPkPk ;pPjPk

�
; ðmPjPj;mPjPk ;mPkPkÞ = ð4; 0; 4Þ �
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whereNPjPj;NPkPk ;NPjPk are the counts of the sub-count nodes, pPjPj;pPkPk ;pPjPk are the probabilities for the commitmentmodes, and

mPjPj;mPjPk ;mPkPk are the minimum number of cells in each sub-count node after the split. To ensure that there’s no progenitor pop-

ulation of very small size, we require that there be at least four cells in the symmetric modes in the main panel.

The commitment bias is defined as
�
2pPjPj +pPjPk ; 2pPkPk +pPjPk

�
, the two proportions sum to one and are interchangeable, we refer

to one of the two sides as the commitment bias pPi of the Pi state, which is kept consistent throughout. In the main panel of exper-

iments, all probabilities of the asymmetric commitment modes are set to zero. Subsequently, cells of the symmetric commitment

modes double and then merge with the daughter cells of the asymmetric commitment modes for each of the downstream states.

For Pj, N0
Pj = 2NPjPj +NPjPk , and similarly for Pk, N0

Pk = 2NPkPk +NPjPk .

Backpropagation to generate progenitor population sample sizes
To generate a phylogeny for a set of sampled cells based on the quantitative fate map, the number of sampled cells was generated at

each (sub-)count node in the count graph (Figure S2, Step 2). This process draws, for each (sub-)count node in the count graph, an

additional quantity called its sample size. A progenitor cell is sampled if any of its progeny at the sampling time is sampled. The total

number of sampled cells is defined as its sample size. The process was accomplished by propagating backwards in the count graph.

During the backward propagation, each forward operation is replaced with a corresponding backward reverse operation. The

detailed implementation of each operation is given in the later section, and the operations are again indicated with bold text. The

sample size for the terminal population is set to the sample size of the experiment. For fixed sampling, the size is the same for all

the terminal types. For proportional sampling, the total sample size is distributed to each terminal type according to their abundance,

which is done using the stochastic split operation. The stochastic split operation is the reverse operation ofmerge. Given the sam-

ple size of the merged population, the reverse operation draws the number of cells sampled in each mode based on a multivariate

hypergeometric distribution. In addition, the reverse operation for split is merge, which adds up the sample size of count nodes of

different modes to the sample size of a count node with the default mode. The reverse operation for double is stochastic coalesce:

given the number of sampled cells in a doubled population, the operation draws the number of cells that are sampled in the pre-

doubling population. The reverse operation for asymmetric double is stochastic asymmetric coalesce: given the number of cells

sampled in each of the populations after asymmetric doubling, the operation draws the number of cells sampled in the population

pre-asymmetric double. In summary, the backpropagation process generates the sample size for each (sub-)count node in the count

graph given the sample size of the terminal populations.

Generating phylogeny of sampled cells
Given sample size of each count node derived in the previous section, we moved to generate the phylogeny for a group of sampled

cells. Before the individual cells were generated and connected to construct a cell phylogeny, the count graph was first reorganized

(Figure S2,Step 3a). At this step, we are only concernedwith the sample sizes of the count nodes, not the population sizes. During the

reorganization, the three sub-count nodes during process 1 (proliferate only) were replaced with two new sub-count nodes, and the

three sub-count nodes during process 2 (commit and proliferate) were replaced with five new sub-count nodes. The reorganization is

done based on if a sampled cell in the current sub-count node either gives rise to one or two cells in the next (sub-)count node. Note

that the sample size(s) for the next count node(s) determines exactly how many cells in the current count node give rise to one and

how many give rise to two cells. For example, when there are 5 sampled cells in the current count node of the doubling sub-count

node and there are 8 cells in the doubled sub-count node, then exactly 3 cells in the current count node give rise to two cells at the

doubled sub-count node and 2 cells give rise to one. As another example, if the Pi-PjPk sub-count node have 5 cells sampled and the

Pi doubled sub-count node has 3 cells sampled and the Pj doubled sub-count node has 4 cells sampled, then there are exactly 2 cells

with both daughters sampled, 1 cell with one Pi daughter sampled and 2 cells with one Pj daughter sampled. We call progenitor cells

with both daughters sampled ‘coalesced’, and progenitor cells with only one daughter sampled non-coalesced. Subsequently, the

sub-count nodes are reorganized based on if cells are coalesced or non-coalesced as well as cells of which cell or state they give

rise to.

For process 1, coalesced cells in the doubling sub-count node are organized into a new ‘coalesced’ sub-count node (labeled C)

and non-coalesced cells in the doubling sub-count node sampled are combined with cells in the non-doubling sub-count node and

organized into a new non-coalesced (labeled NC) sub-count node. Cells in the death sub-count node are lost. The original doubled

sub-count node is replaced with the coalescing (labeled CI) sub-count node (Figure S2, Step 3a, top example).

For process 2, coalesced cells in each of the three original sub-count nodes (Pi-PjPj, Pi-PkPk and Pi-PjPk) that give rise to two cells

in the next count nodes are organized into their respective new sub-count nodes (labeled the same name). Two new sub-count nodes

were added that represent cells that give rise to only one cell (of either of the downstream types) in the next count node, (labeled Pi-Pj

and Pi-Pk). Non-coalescent cells in the Pi-PjPj sub-count node are merged with non-coalesced cells that give rise to only one Pj cell

in the Pi-PjPk sub-count node. Similarly, non-coalesced cells in the Pi-PkPk sub-count node are merged with cells that give rise to

only one Pk cell in the Pi-PjPk sub-count node.

The reorganized count graph (Figure S2, Step 4a, right) specifies the number of sampled cells at each stage but does not distin-

guish between individual cells. To generate the sampled cell phylogeny, we next listed individual cells and specified which cells give

rise to one or two sampled cells at the next time point without specifying which cells at the next stage they were connected to (Fig-

ure S2, Step 3b). Next, cells in an earlier time window were connected to cells in the later time window to make up the phylogeny
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(Figure S2, Step 4a). Finally, the phylogeny was further simplified by removing internal nodes that give rise to one cell only (Figure S2,

Step 4b).

Definition of commitment time and progenitor population size
In our model, the fate commitment modes are assigned at the beginning of the process 2 time (commit and proliferate) window,

before cells proliferate to become the downstream states or types. In fact, the fate decision could have been made any time during

the previous cell cycle. Hence, the exact commitment time could be chosen as either at the beginning of the previous time window or

at the end of the window. Similarly, the progenitor state population size may be defined as the number of cells at either time point. As

detailed in Figure S8B, it can be observed that, for symmetric commitments, the time of fate separation (where daughter cells are

exclusively one of the downstream states) on the phylogeny is, at the latest, at the beginning of the cell cycle (t1). On the contrary,

for commitment by asymmetric cell division, fate separation is at the end of the cell cycle (t2). Therefore, we define the beginning of the

window as the commitment time for progenitor states undergoing symmetric mode of commitment, and the end of the window as

the asymmetric commitment time. The progenitor population sizes for symmetric and asymmetric commitment modes are defined

as the number of cells N1 and N2 at the corresponding commitment times.

Definition of operations to generate count graph
The operations used in the count graph generation and backward propagation of sample sizes are formally defined here. Four deter-

ministic operations are defined for generating the population counts in quantitative fate maps.

split: ðN; ðp1;p2;.;pIÞ; ðm1;m2;.;mIÞÞ1 ðN 1; N2; .;NIÞ
The split operation splits some total count N into a vector of output counts N1;N2;.;NI based on the input probabilities

p1;p2;.;pI and ensures the post-split counts: (i) add up to the total count, (ii) are larger than some minimum values

m1;m2;.;mI and (iii) are all integers. First, let m be the smallest m such that pm Rpi, for i˛ f1; 2; .; Ig. Then,

Ni = maxð½Np i�;mi Þ for all ism, and Nm = N � P
ism

Ni, where ½x� is the rounding operation that returns the integer that is closest

to x.

merge: ðN1;N2;.;NIÞ 1 N

The merge operation takes a vector of input counts and add them, i.e. N =
P
i

Ni.

double: N 1 2N

The double operation multiplies the input count by two.

asymm double: N1ðN; NÞ
The asymmetric double operation takes the input count and produces two output counts of the same size.

For each of the four forward operations, a reverse operation is defined for generating the sample sizes based on the popula-

tion sizes.

stochastic split: ðS; ðN1; N2; .; NIÞÞ 1 ðS1;S2;.;SIÞ
stochastic split is the reverse operation of merge. ðS1;S2;.;SIÞ follows a multivariate hypergeometric distribution with the

following probability mass function

pðS1 = k1;S2 = k2;.;SI = kIjN1;N2;.;NI;SÞ =
 YI

i = 1

�
Ni

ki

�!,��X
i

Ni

S

�!
merge is the reverse operation of split.
stochastic coal: ðS; NÞ 1 S0

stochastic coalesce is the reverse operation of double. When S cells are sampled from 2N cells that are direct descendants of N

cells, S0 is the number of cells sampled in N cells. Here, the number of coalescences C = S � S0, follows the distribution with the

below probability mass function:

pðC = z j S = k Þ =

��
n
z

��
n � z
k � 2z

�
2ðk� 2zÞ

���
2n
k

�
After drawing C, S0 is computed with S0 = S � C.

stochastic asymm coal: ððS1;S2Þ;NÞ 1 S0

stochastic asymmetric coalesce is the reverse operation of asymmetric double. WhenN parent cells double, and each cell gives

rise to two cells of two different downstream states/types, and S1 out of N cells of one type and S2 of N cells of the other type are

sampled. Then the number of cells sampled in the parent population is S0. Here, the number of coalescences C = S1 +S2 � S0 fol-
lows the distribution with the below probability mass function:

pðC = zjS1 = k1;S2 = k2Þ =

��
n
z

��
n � z
k1 � z

��
n � k1
k2 � z

�����
n
k1

��
n
k2

��
After drawing C, S0 is computed with S0 = S1 +S2 � C.
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Fate map topology reconstruction with FASE
To determine if a node is a FAte SEparation (FASE), a list of unique terminal types is generated for all internal nodes of the phylogeny

which constitutes its observed fate. A node is classified as a FASE (for at least one pair of terminal types) if either of its daughter nodes

has an observed fate that is less potent. FASEs are identified across the entire phylogenetic tree. Next, for each FASE, all pairs of

terminal types that the FASE separates are listed. A pair of terminal types is separated if one terminal type is seen in only one branch

of the node and the other type only in the other. Then, for a pair of terminal types, the mean depth of the FASEs that separated the

terminal fateswere computed, referred to as the FASE time. If no FASE existed for a pair of terminal types, the FASE timewas taken to

be zero. Finally, the FASE distance between a pair of terminal types is equal to the difference between total time of the phylogenetic

tree and their average FASE time. To reconstruct the topology from the full distance matrix, the upgma function from the ‘‘Phangorn’’

package49 was applied, which is a wrapper of hclust in base R.

Fate map topology reconstruction with SPS
Computation of shared progenitor scores was implemented as specified elsewhere.6 The shared progenitor score or SPSwas calcu-

lated between two terminal types as the number of internal nodes in the phylogeny that have both terminal types scaled by the num-

ber of total terminal types each internal node contributes to. The score was computed by going through all the internal nodes in the

phylogeny. For each internal node, let T1;T2;.; TL be the list of terminal types it gives rise to, with L being the length of the list, then its

contribution to all pairs of terminal types derived from the list is 1=ð2L� 1Þ. For example, if an internal node is capable of fT1;T2; T3g,
and let SPS½Ti ;Tj� denote the shared progenitor score for the pair of terminal types Ti and Tj, then for we can compute the contribution

of the internal node as 1=ð23� 1Þ = 1=4. Then

SPS½T1 ;T2 � + = ð1=4Þ
SPS½T1 ;T3 � + = ð1=4Þ
SPS½T2 ;T3 � + = ð1=4Þ
After iterating over all internal nodes, amatrix of shared progenitor scoresMSPS was generated. The SPSmatrix was converted to a

similarity matrix by 1� ðMSPS=maxðMSPSÞÞ. Finally, UPGMA clustering was applied to the similarity matrix to obtain the fate map

topology.

Random topology generation
For providing a baseline of topology reconstruction errors, we generated a random topology for each experiment compared in

Figures 2F and 5A using the same method as described in the fate map reconstruction section. Briefly, the ‘rtree’ function in the

‘ape’ R package47 was used. This method creates bifurcations by randomly assigning terminal types to each side of the bifurcation

based on draws from a uniform distribution.

Mapping of inferred progenitor states to true progenitor states
Upon initial reconstruction of fate map topology, the correspondence between the inferred progenitor states and the true progenitor

states in the original fate map is not known. For downstream evaluations, true and inferred progenitor states were matched based on

their potency and commitment patterns. An inferred progenitor state was considered correctly resolved if there existed a true pro-

genitor state that met the following conditions:

(i) the true progenitor state had the exact same potency as the inferred progenitor state.

(ii) the immediate downstream states or types of the true progenitor state had the exact same potencies as the immediate down-

stream states/types of the inferred progenitor state.
Node state assignment in time-scaled phylogeny
One characteristic of a progenitor state is its potency: the set of terminal types it can lead to. Each node in the time-scaled phylogeny

also had an observed potency determined by the set of states its progeny covers. The inferred progenitor state of a node of the phy-

logeny was assigned based on its potency: the node was assigned an inferred state that had the same potency as itself. If no such

state existed in the fate map, then it was assigned the least potent state in the fate map that was more potent than the node but

included all observed fates of the node in its potency.

Commitment time inference with ICEs
To infer commitment time of a progenitor state, a set of Inferred Commitment Events (ICEs) were identified. A node in the time-scaled

phylogeny was considered an ICE if both daughters had a different assigned state than itself. Unlike FASEs, which are defined for
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each pair of terminal fates, ICEs are defined with respect to inferred progenitor states. If a node is an ICE, it is also a FASE for at least

some pair of terminal states, but the opposite is not necessarily true. Each ICE was associated with a progenitor state. The depths of

all ICEs associated with a state defined the ICE times. Themean of ICE timeswas used as an estimate for the commitment time. In the

case where inferred commitment times of the downstream state was earlier than that of the upstream state, the commitment time of

the downstream state was set to that of the upstream state. This situation is indicative of the lack of evidence supporting the relative

ordering the two commitments in question.

Progenitor population size and commitment bias inference
To identify the population present at the commitment time of a progenitor state, first, a set of extended states was defined for each

inferred progenitor state. The extended states included the state itself, its upstream states up to root and its downstream states down

to the terminal types. Next, a state path was constructed on fatemap topology for each branch that spanned the commitment time of

the progenitor state: the state path included all the inferred progenitor states in the fate map topology between the state of the

incoming node (closer to the root of the phylogeny) and the state of the outgoing node (closer to tips of the phylogeny) of the branch

(Figure 3G). A branch was considered associated with the progenitor state if its state path was a subset of the extended states of the

progenitor state. To estimate the progenitor population size, the collection of incoming nodes of the associated branches were

counted (Figure 3H).

To quantify the bias of a progenitor state’s commitment, each associated branch was further classified as (i) committing to

one of the downstream states, or (ii) uncommitted. The classification was made based on the state path; if the state path

covered one of the immediate downstream states, it was classified accordingly. Otherwise, it was classified as uncommitted.

For commitment bias, the proportion of committed branches committing to each downstream state of the inferred progenitor

state was used.

Barcoding mutagenesis model
Let there be i = 1;2;.; I total barcoding sites. A barcoding site is unmutated at the beginning (i.e., t = 0) and once activated, starts to

accumulate heritable mutations over time. Mutation events happen independently for each site according to a Poisson point process

with a constant rate after activation (Figure 4A). Let the mutation rate of the Poisson process be li for site i, then the probability of

having amutation event in a small time window ½t; t +Dt� is lDt. In our model, once a site hasmutated, it can no longer mutate further.

A mutant allele is inherited from a cell by all its descendants. The Poisson point process has the memoryless property, which means

that if no mutation event has happened up until time t, then the probability of getting a mutation event in the time window ½t; t +d�
is 1 � e� ld, which does not depend on the value of t.

When a mutation event occurs, an unmutated active copy of the site is converted into one of many possible mutated inactive al-

leles, each with a distinct emergence probability (Figure 4A). Let Ai1;Ai2;.;AiJi be the set of possible alleles for site i, and

ai1; ai;2;.; aiJi be their corresponding probabilities, then a mutant allele Xi of site i created by a mutation event has PðXi = AijÞ =

aij. To summarize, the parameters of the barcode mutagenesis model include the mutation rates fligi = 1;.;I, and each site’s mutant

allele emergence probabilities fai1;.; aiJi ;gi = 1;.;I.

Parametrization of barcode mutagenesis model with MARC1 mouse data
To simulate lineage barcodes that mimic a realistic system, the mutagenesis model was parametrized based on the MARC1

(Mouse for Actively Recording Cells 1) system5 wherein extensive embryonic barcoding data are available.30 In MARC1 mice, so-

matic mutations are induced in tens of independent homing guide RNA loci (hgRNAs).29 We estimated the mutation rates of

MARC1 hgRNAs (i.e., rate of the Poisson process) using embryonic time course data (Figure S4A). We estimated emergence prob-

abilities of mutant alleles for each hgRNA by adapting the inDelphi algorithm that predicts CRISPR-Cas9 mutations.31 The details

of this estimation can be found in the Quantification and Statistical Analysis section. We compared and verified inDelphi’s predic-

tions against published MARC1 data (Figure S4B). To test how well the results resembled actual lineage barcoding data, we simu-

lated barcoding in whole-mouse embryos for E3.5 to E16.5 in samples of 2,000 cells (or fewer when there were fewer than 2,000

cells in the organism) and compared the results to that of experiments. See Figures S4A–S4G and their legends for the results and

their interpretation.

Parameters for simulating MARC1 lineage barcodes
Parameter estimates from theMARC1 data were used to simulate lineage barcodes from time-scaled phylogeny. The corresponding

estimatedmutation rates and inDelphi predicted allele emergence probabilities for eachMARC1 hgRNAwere used as parameters for

themutagenesis model. For reconstructing Phylotime phylogeny in Figures 5A and 5B, 50 hgRNAs of the ‘intermediate’ or ‘fast’ cate-

gory were randomly sampled from the MARC1 pool of hgRNAs for each simulation.

Phylotime for reconstructing time-scaled phylogeny from lineage barcodes
Our approach to reconstructing time-scaled phylogenetic trees for thousands of cells was based on amaximum likelihood estimation

of pairwise temporal distances between cells. Given a pair of terminal cells, with their MRCA being N1, the branch length parameter

tN1
was estimated, which is the time since the MRCA of the two cells (Figure S4H).
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For a barcoding site i with a mutation rate of li, and probabilities ai = ða1; a2;.; aJi Þ i of mutating into alleles ðA1;A2;.;AJi Þ i, the

likelihood of observing the given alleles MiC1
and MiC2

in a single barcoding site in two cells (C1; C2) is the sum of two terms:

pi = pi;N1 ;1 +pi; N1 ;0

�
pi;C1

pi;C2

�
(Equation 1)

The first term, pi;N1 ;1, is the probability that a mutation has occurred before the MRCA, leading to identical alleles in both cells. The

second term is the probability of observing the allele in each terminal cell respectively (pi;C1
and pi;C2

) conditional on no mutation

occurring before the MRCA (the probability of which is pi; N1 ;0).

For the first term, we first define the term pi;N1 ;Aij
for each mutant allele Aij, where pi;N1 ;Aij

=
�
1 � e� li tN1

�
aij if both C1 and C2 carry

allele Aij for the site, and pi;N1 ;Aij
= 0 otherwise. Then the first is calculated as:

pi;N1 ;1 =
XJi
j = 1

pi;N1 ;Aij
which is the sum over all probable mutations, where at most one
 term can be non-zero.

For the second term, we have

pi;N1 ;0 = e� li tN1
and
pi;c =
�
1 � e� liðT � tN1 Þ

�1� IndðMic = }0}ÞY
j

a
IndðMic = AijÞ
ij

�
e� liðT � tN1Þ

�IndðMic = }0}Þ
where Mic denote the allele observed for c = C1;C2 and }0} den
otes an unmutated allele, and Ind(.) is the indicator function.

Because barcoding sites in our model are assumed to be independent, the likelihood for the set of alleles observed in all barcoding

sites is then the product of their individual likelihoods:

p
�fli ; a igi; t N1

�
=
Y

i

p i (Equation 2)

To get estimates of pairwise distance, or equivalently, time since MRCA between two cells (tN1
), we first plugged in estimates of

mutation rates and allele emergence probabilities. In the simulation experiments in this work, the true values of mutation rates and

allele emergence probabilities were plugged in. In actual experiments, we suggest using naive estimates for the mutation rate: bli =

� 1
T logð1 � FiÞ, where Fi is themutated fraction for site i and T is the total time from the start of the experiment to the sample collec-

tion. For mutant allele emergence probabilities, we suggest using estimates obtained from independent experiments or predictions

such as inDelphi. If no such information is available, we suggest using a uniform prior, i.e. aj = 1=Jj = 1;.;J. To get the optimal

value of tN1
, the following score equation was solved using the Newton-Raphson method:

dlog
�
p
�
t N1

� �
dt N1

= 0 (Equation 3)

The distance between the two cells is 2 ðT � t N1
Þ. Once all pairwise distances were computed with the above method, we

applied UPGMA hierarchical clustering to derive a phylogenetic tree wherein branch lengths represent actual time. We called this

approach Phylotime.

Phylogenetic tree inference with hamming distance and Cassiopeia
The Hamming distance between barcodes of two cells is defined as the number of sites for which the two cells do not share the same

allele. To infer the phylogeny, UPGMA was applied to the pairwise Hamming distance matrix. For computing KC1 distance, the total

length of the inferred tree is scaled to the sampling time. Phylogeny was also inferred with Cassiopeia, a phylogenetic reconstruction

software package which was designed for barcode-based reconstruction.35 Cassiopeia was run with default parameters with a sin-

gle thread. The software uses a greedy top heuristic and an integer linear programbottom solver.We allowedCassiopeia up to 24 h to

solve each tree. The Cassiopeia-reconstructed tree lacked branch lengths and also contained multifurcations that were not fully

resolved. The multifurcations were resolved randomly using the ‘multi2di’ function from the ‘ape’ R package,47 initial branch lengths

were assigned to the tree using the Grafen option, and the ‘chronos’ function was applied to estimate the final branch length.

Simulations of experimental readout errors
To assess how quantitative fate mapping may be affected by readout errors, two commonmodes of experimental error were consid-

ered. These errors include allele dropout, when a fraction of barcoding sites is not detected in every single cell. This form of error is

common in experiments where barcoding sites are directly amplified from a single cell’s genome or transcriptome.8 To simulate allele

dropouts, alleles were set to missing completely at random (MCAR), meaning that missing happens with the same probability for all

cells and all sites. We also considered allele switching, an error that occurs when an allele from one cell is assigned to another. This
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form of error can emerge if template switching takes place during barcoding amplification, a possible outcome for synthetic barcod-

ing loci that have a high degree of homology.30 To simulate allele switching, we considered a single barcoding site where there are N

total cells. For the site, the number of cells with different alleles were first counted: N1;.;NJ cells each with a different unique allele,

the counts were then normalized to proportions fj = Nj=N. Given the probability of allele switching pswitch the number of cells with

error was calculated as Nerror = ceilingðNpswitchÞ. To set the error alleles, the Nerror cells were first drawn, and alleles for those cells

were set randomly by a multinomial distribution where the probabilities were the f1; f2;.; fJ computed earlier. The process was

repeated for each barcoding site.

In each case, we applied the error to 5, 10, 20, 30, 40, or 50% of the data from our panel of 3,310 simulated barcoding experiments

then applied Phylotime followed by ICE-FASE to reconstruct quantitative fate maps. For allele dropout, we used a strategy to impute

missing alleles before applying Phylotime. The strategy, detailed in the next section, predicts missing alleles for each barcoding site

using amachine learning algorithm (XGBOOST)50while leveraging information fromall the other sites, and it does so sequentially from

the site with the least amount of missing data to the site with the most.

Imputation of missing alleles with XGBoost
Given a character matrix that is the cell by sitematrix where each element in thematrix is the allele observed, themissing percentages

of all barcoding sites were computed first. Next, each site was imputed one by one going from the one missing in the fewest cells to

the one missing in the most cells, using information from all other sites (Figure S8C).

Specifically, when imputing missing alleles of a single site, an ‘XGBoost’ model with multinomial ‘softmax’ objective was trained

where all the cells whose alleles were observed for the site50 were used as the training examples, and all sites that is not the one to be

imputed were used as training features, and treated as categorical variables, where each mutant allele is a category. The design ma-

trix of the model was constructed by one-hot encoding each site, treating the missing in the other sites as unmutated, and subse-

quently column concatenating all one-hot matrices. The parameters ‘max_depth = 4’ and ‘nrounds = 20’ were used for the

XGBoost model.

Simulation of experiments with different sampling time
A progenitor field may be studied by obtaining its descendant cell types immediately after its development or at a later time point. For

instance, development of the primary germ layers (mesoderm, ectoderm, endoderm) during gastrulation may be analyzed by obtain-

ing these cell types immediately after gastrulation (�E7 in mouse) or in late gestation (�E15) by obtaining neuronal cells as ectoderm

descendants, muscle cells as mesoderm descendants, and hepatocytes as endoderm descendants. To investigate the effect of

sampling time, we simulated phylogeny and barcoding with 50 hgRNAs for all our 16-terminal type fate maps while sampling 100

cells from each terminal type at days 11.5, 12.5, 13.5, 14.5, or 15.5 days (Figure S5E), repeating each condition twice (53 fate

maps x 2 sampling strategies x 2 repeats). We then applied Phylotime and ICE-FASE to obtain a quantitative fate map in each

case and compared quantitative fatemap reconstruction with terminal cell types sampled at various time points after the last commit-

ment (Figures S5F–S5I). We also applied ICE-FASE to the true phylogeny for comparison (Figures S5J–S5M). For the results and

detailed interpretation see Figures S5E–S5M and their legends.

Simulation of experiments with increased cell death
Because cell death is a prevalent developmental control mechanism,36 we assessed how it affects quantitative fate mapping. In our

fate maps with 16 terminal types, we set cell death per division to increasing levels for either all terminal types or all progenitor states

with at least 500 cells at their times of commitment (Figure S5N). After simulating barcoding outcomes and applying Phylotime and

ICE-FASE, we compared fate map reconstruction accuracy as a function of cell death rates. For the results and detailed interpreta-

tions, see Figures S5N–S5S and their legends.

Simulation of experiments with commitment via symmetric vs asymmetric divisions
Next, we considered stereotyped cell fate commitment involving asymmetric cell divisions, analogous to those seen in fruit flies eye

development.37 Asymmetric cell divisions are also common at later stages of development in mammals.51 To investigate the effect of

this mechanism of commitment on quantitative fate mapping, we simulated barcoding experiments on a pectinate 16 terminal type

fate map (Figure 1C, bottom left) with commitments happening with either asymmetric divisions or symmetric division exclusively.

The pectinate fatemapwith 16 terminal typeswasmodified slightly for the comparison of commitment via symmetric and asymmetric

cell division. All progenitor state biases were set to 0.5. To obtain a fate map whose terminal types have similar population sizes, the

doubling time for the terminal state that was the i-th to emerge was set to 0:6 � 0:5=16i. Moreover, the cell death probabilities for the

terminal population were set to 0.1 and a cell doubling probability per doubling time (cTj;L for terminal type Tj) of 0.4 was instituted. For

the asymmetric mode, one daughter cell commits to the downstream terminal type and the other commits to the downstream pro-

genitor state after commitment (Figure S5T). For the symmetric mode, each cell randomly commits to one of the downstream fates

based on predefined probabilities and subsequently undergoes symmetric divisions (similar to all previous simulations) (Figure 1 and

S5T). In each case, we simulated one hundred experiments with 50 hgRNAs and 50 cells sampled from each terminal type

(Figures S5U and S5V).We then applied Phylotime and ICE-FASE to obtain quantitative fatemaps and compared the results between

the two commitment modes. For the results and detailed interpretation, see Figures S5T–S5Z and their legends.
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ICE-FASE for multiple replicates
First, the FASE distance matrix was computed for each phylogeny separately. The distance matrices were then averaged, and a

consensus topology was obtained by applying UPGMA clustering to the average FASE distancematrix. The set of inferred progenitor

states were defined based on the consensus topology. For each replicate’s phylogeny, each of its nodes were assigned one of the

progenitor states based on their potencies, based on which ICEs were identified. Next, ICEs identified from all replicates were

pooled, and their average time was taken to be the consensus commitment time. Finally, edges associated with each inferred pro-

genitor state were identified in each replicate’s phylogeny based on its consensus commitment time. The resulting population sizes of

the progenitor states, and population sizes committing to each downstream states or types were averaged. The average population

size was taken as the consensus population size and the proportion of average population size committing to each downstream state

was taken as the consensus commitment bias.

Simulation of experiments with prolonged commitment
Commitment events modeled thus far involve all the progenitor population committing within one cell cycle. Because some progen-

itor states undergo gradual commitment during development, we expanded our models to allow progenitor states to commit over

more extended time periods. We then created three fate maps with 16 terminal types that are identical in topology and other param-

eters, except that P11 commits to its downstream states (P1 and P9) between day 5.8 and 6.3 in the first map, between day 5.8 and

6.9 in the second map, and between 5.8 and 7.5 days in the third map (Figure S6A). The details of the modifications are given in the

next section. We simulated phylogenies based on these fate maps with fixed sampling of 100 cells from each terminal type and

repeated simulations one hundred times for each. After applying Phylotime followed by the ICE-FASE algorithm, we compared

the accuracy of quantitative fate map reconstruction in each case. For the results and detailed interpretations, see Figures S6B–

S6E and their legends.

Modified fate map with prolonged commitment
To illustrate the effect of progenitor cells committing over longer times, we modified an existing fate map with 16 terminal types from

our panel. In the original fate map, the progenitor state P11 commits within a single cell cycle from 5.8 to 6.3 days. In a first modified

version, the commitment happens within two cell cycles from 5.8 to 6.9 days. A random 1/3 of all the P11 population commits at the

original time whereas the remaining population self-renews by going through an extra round of cell division. After the extra round of

self-renewal, they commit to the downstream cell states of P9 and P1 according to the P11 commitment bias. Finally, in a second

modified version, commitment happens over three cell cycles from 5.8 to 7.5 days. A random third of all the progenitor population

again commit at the original commitment time. After one extra round of self-renewal, half of the remaining uncommitted population

commit while the other half self-renew for yet another round, after which they also commit. To accommodate commitments

happening over more than one cell cycle, the definition of commitment time and progenitor population size were modified accord-

ingly. The progenitor population size was defined as the sum of the population size committing to downstream states during each cell

cycle. The commitment time was defined as the start of the cell cycle during which commitment has happened weighted by the num-

ber of cells that have committed during the cell cycle. The ICE-FASE estimates of P11 for each fate map were compared to the

respective definition of commitment time and progenitor population size.

Simulation of experiments with multifurcating fate commitments
Commitment events modeled thus far involved bifurcating progenitor states. However, some progenitor states in development may

simultaneously commit to more than two immediate downstream states (e.g., trifurcate). To investigate this, our generative model

was extended to simulate n-furcations in general. The details of the model extension are given in the next section. Next, we assessed

whether the ICE-FASE algorithm can resolve trifurcations. First, a trifurcation in a 16 terminal type fate map was introduced by

removing the progenitor state P8 from the fate map and making its downstream states (P5 and P6) directly emerge from the commit-

ment event of its upstream state P11 (Figure S6F). We refer to this trifurcating progenitor state as P11*, compared to the original bifur-

cating P11 as they have identical potencies, commitment times, and population sizes. We then simulated phylogenies and barcoding

with 50 hgRNAs based on both the original bifurcating and the new trifurcating fate maps with fixed sampling of 100 cells from each

terminal type and repeated each simulation one hundred times. Finally, we applied Phylotime followed by the ICE-FASE algorithm to

reconstruct a quantitative fatemap based on each simulated experiment. For the results and detailed interpretation see Figures S6G–

S6L and their legends.

Count graph for simulating progenitor state multifurcation
When the fate map involved a multifurcation, the model to generate cell phylogeny was extended. Only multifurcation via symmetric

cell division was considered, where onlyminor adjustment to themethods described earlier needed to bemade. Take a trifurcation of

progenitor state Pi into Pj, Pk and Pl as an example. All computations with regard to process 1 (proliferate process) remained the

same. During process 2 (commit and proliferate process) in the count graph generation step, the default count node was split into

three sub-count nodes of commitment modes Pi-PjPj, Pi-PkPk and Pi-PlPl. The sample size generation step was carried out as

usual. In the reorganization step, six different new sub-count nodes were created to replace the original three, including Pi-PjPj,
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Pi-PkPk, Pi-PlPl, Pi-Pj, Pi-Pk and Pi-Pl. During reorganization, non-coalesced cells in Pi-PjPj, Pi-PkPk, Pi-PlPl are moved to their

respective non-coalesced sub-count nodes. The remaining steps were carried out as usual.

Generation of an inducible Cas9 barcoded stem cell line
Knock-in of an inducible Cas9 cassette

EP1 iPSCs were modified to express Cas9 protein under doxycycline induction. CRISPR/Cas9 was used to target and insert both a

reverse tetracycline-controlled transactivator (rtTA) construct and a tetracycline-dependent Cas9 construct into each of the two

copies of the AAVS1 safe harbor locus. To stably introduce the cassette, cells were grown to 80% confluency and then dissociated

with Accutase for 13 min to generate a single cell suspension. Dissociated cells were resuspended in mTeSR Plus media with 5 mM

blebbistatin and counted- 50,000 cells were seeded into one well of a 24-well plate coated in Matrigel. The following day, 350 ng of

plasmid expressing Cas9 and an AAVS1-targeted guide RNA (modified PX459, with T2A replaced by P2A) and 500 ng each of plas-

mids containing the Cas9 donor sequence (modified Addgene #58409 with blasticidin resistance)52 and rtTA donor sequence (Addg-

ene #60843)43 were combined and added to 48 ul Opti-MEM (ThermoFisher). 2 ul of Lipofectamine Stem Transfection Reagent

(ThermoFisher) were added to the transfection mix, which was then vortexed and incubated for 10 min at room temperature. The

entire transfection mix was added to one well of cells. Media was replaced the following day. 40 h after transfection, cells were

transiently selected for 24 h with 0.95 ug/mL puromycin (MilliporeSigma), 5 ug/mL blasticidin (MilliporeSigma), and 200 ug/mL

G418 sulfate (ThermoFisher).

Surviving cells were cultured to 30% confluency, and then dissociated to a single cell suspension for clonal expansion. 500–1000

cells were seeded in one well of a 6-well plate and cultured for 7–10 days before clonal colonies were picked and screened for the

intended insertions. PCRwas performedwith a reverse primer complementary to the right homology armof the targeted AAVS1 locus

(GGAACGGGGCTCAGTCTGA) and a forward primer either targeting the Cas9 knockin (CACCTTGTACTCGTCGGTGA) or the rTTA

constructs knockin (GCTGATTATGATCCTGCAAGC). Positive colonies were cultured and clonally expanded once more, with a sec-

ond round of colony picking and PCR screening to ensure clonality of the final cell line.

Selected clones were then further screened for functionality of the inducible Cas9 cassette. Cells were treated with 2 ug/mL doxy-

cycline (MilliporeSigma) for 5 days and cells were harvested for RNA extraction. RNA was converted into cDNA and qPCR was per-

formed to confirm both Cas9 and rtTA mRNA expression when normalized against housekeeping genes GAPDH, CREBBP, and

ACTB (Cas9 Fwd: CCGAAGAGGTCGTGAAGAAG; Cas9 Rev: GCCTTATCCAGTTCGCTCAG; rtTA Fwd: GCTAAAGTGCATCTCGG

CAC; rtTA Rev: TGTTCCTCCAATACGCAGCC; GAPDH Fwd: TAGCCAAATTCGTTGTCATACC; GAPDH Rev: CTGACTTCAACAGC

GACACC; CREBBP Fwd: GAGAGCAAGCAAACGGAGAG; CREBBP Rev: AAGGGAGGCAAACAGGACA; ACTB Fwd: GCGAGAA

GATGACCCAGATC; ACTB Rev: CCAGTGGTACGGCCAGAGG).

Transfection with a homing guide RNA library

50,000 cells from the doxycycline-inducible Cas9 line were seeded into one well of a 24-well plate. The following day, 300 ng of Super

PiggyBac Transposase (SBI System Biosciences), 700 ng of PB-U6insert hgRNA library (Addgene #104536),5 and 50 ng of PB-

U6insert-EF1puro library (Addgene #104537)5 were combined and added to 48 ul Opti-MEM (Gibco). 2 ul of Lipofectamine Stem

Transfection Reagent (Thermo Fisher) were added to the transfection mix, which was then vortexed and incubated for 10 min at

room temperature. The entire transfection mix was added to one well of cells. Media was replaced the following day. Transfected

cells were selected with 0.95 ug/mL puromycin for one week.

Selected cells were dissociated to single cell suspensions, and 500–1000 cells were seeded in one well of a 6-well plate and

cultured for 7–10 days before clonal colonies were picked. Colonies were screened for relatively high numbers of hgRNA insertions

using qPCR. Genomic DNAwas extracted from each colony and the relative number of hgRNA insertions wasmeasured by subtract-

ing Cq values of genomic hgRNA amplification (Fwd: ATGGACTATCATATGCTTACCGT; Rev: TTCAAGTTGATAACGGACTAGC)

from Cq values of genomic SOX11 amplification (Fwd: TGATGTTCGACCTGAGCTTG; Rev: TAGTCGGGGAACTCGAAGTG). Col-

onies with the largest cycle threshold value difference, indicating the highest number of hgRNA insertions, were cultured and clonally

expanded once more. Colonies were picked one additional time to ensure clonality of the final EP1-Cas9-hgRNA iPS cell line.

Barcoding activity of cell line-integrated hgRNAs

Cell line hgRNA identifiers and mutation activity levels were determined by performing a doxycycline time-course experiment-cells

were treated with 1 ug/mL doxycycline daily for 11 days. Genomic DNA was extracted from cells after 0, 4, 8 and 11 days of doxy-

cycline treatment and Cas9 induction. hgRNA sequencing libraries were prepared as follows: 5 ng of genomic DNAwas amplified on

a real-time PCR machine in 1X KAPA SYBR FAST (Roche) with 0.0625 uM hgRNA PCR1 forward primer

(ACACTCTTTCCCTACACGACGCTCTTCCGATCTATGGACTATCATATGCTTACCGT), 0.1875 uM hgRNA PCR1 truncated forward

primer (CTACACTCTTTCCCTACACGAC), 0.0625 uM hgRNA PCR1 reverse primer (TGACTGGAGTTCAGACGTGTGCTCTTCC

GATCTGCCATACCAATGGGCCCGAA), and 0.1875 uM hgRNA PCR1 truncated reverse primer (GTGACTGGAGTTCAGACGTG).

Reactions were denatured at 95�C for 3 min, and then cycled at 95�C for 20 s, 64�C for 20 s, and 72�C for 10 s. The reactions

were stopped when the real-time PCR curve reached early-to-mid-exponential phase. Reactions were then diluted 10– to

100-fold. 1 ul of diluted PCR was used as template for a subsequent PCR reaction in 1X KAPA HiFi HotStart ReadyMix (Roche)

with 1X SYBR Green I Nucleic Acid Stain (ThermoFisher) and 0.25 uM each dual indexing primer pair for Illumina. Reactions were

denatured at 98�C for 30 s, and then cycled at 98�C for 10 s, 64�C for 20 s, and 72�C for 10 s. Reactions were stopped when the

real-time PCR curve reached early-to-mid-exponential phase. Libraries were purified with DNA Clean & Concentrator-5 columns
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(Zymo), sequenced on an Illumina MiSeq instrument, and analyzed. hgRNA sequencing reads were analyzed using the published

MARC1 data analysis pipeline.30 The percent of reads for each hgRNA identifier sequence that were mutated was calculated at

each time point (Figure S4), determining the relative activity for every hgRNA.

In vitro quantitative fate map experiments
Single cells from the EP1-Cas9-hgRNA iPSC cell line were FACS sorted into a 96-well plate coated with Matrigel and containing

mTeSR plus medium supplemented with 5 mM blebbistatin, 10% CloneR (STEMCELL Technologies), 1 mM Pifithrin-a hydrobromide

(Tocris Bioscience), 1X Antibiotic-Antimycotic (ThermoFisher), and 0.2 ug/uL doxycycline. Supplemented media was exchanged

every other day. Three days after sorting, wells with surviving cells were identified and assigned to follow the quantitative fate

map for either experiment one (E1) or experiment two (E2).

For E1, cells were grown in the sorted wells until there were approximately 32 cells, or 6 doublings, which was considered to be P5

of the QFM. P5 cells were then carefully dissociated and passaged-media was aspirated fromwells and 30 ul of Accutase was added

and incubated at 37�C for 8 min. The Accutase was then gently triturated to detach all cells from the plate, and 10 ul was directly

added to a new well filled with supplemented media, corresponding to P3 of the QFM. The remaining 20 ul was directly added to

a new well corresponding to P4, resulting in a 1:2 split of the cells. Passaged cells were incubated for 2 h to allow cells to settle

and attach to the Matrigel coating, after which a 50%media exchange was performed to decrease the total amount of Accutase re-

maining in the wells. Once the cells in P4 had gone through approximately two doublings, they were passed following the same pro-

tocol, this time splitting the cells evenly between progenitor states P1 and P2. After P3’s cells had gone through approximately 4

doublings since their passage they were split once again, evenly into terminal types T5 and T6. P2 cells were given four doublings

before being split evenly into terminal types T3 and T4, and finally P1 was split evenly after five doublings into terminal types T1

and T2.

For E2, cells were propagated using the same techniques as E1, but following a slightly altered QFM. P3 cells were split into ter-

minal types T5 and T6 after just two doublings, and P4 cells were split into P1 and P2 after four doublings, representing a switch in the

order of commitment P3 and P4 commitment times between the E1 and E2 fate maps. After cells were passaged into their terminal

wells, doxycycline treatment was ended so that barcode editing would discontinue. Cells were then passaged into 6-well plates and

grown to confluency for terminal cell barcode extraction and analysis.

Sequencing single-cell lineage barcodes
Each terminal well from E1 and E2 were dissociated into single cell suspensions by incubating the cells in accutase for 14 min. Single

cells were resuspended and diluted in PBS pH 7.4 for FACs sorting. Single cells from each terminal group were sorted into 192 wells

of a 384-well plate (half a plate per terminal group), with each well containing 1 ul of QuickExtract DNA Extraction Buffer (Lucigen).

Plates were vortexed and spun down directly after sorting to ensure cells were in the QuickExtract buffer. DNA was extracted from

single cells by incubating the sorted plates for 10 min at 65�C followed by 5 min at 98�C to inactivate the QuickExtract.

Single-cell hgRNA sequencing libraries were generated using three serial PCR reactions as per the published protocol from Leeper

et al.,30 with each cell treated as an individual sample. Eachwell of single-cell DNA received 9 ul of PCR0mix containing 1XDreamTaq

Hot Start PCR Master Mix (ThermoFisher) and 0.5 uM each hgRNA pre-amplification forward and reverse primers (Fwd: AAGTAA

TAATTTCTTGGGTAGTTTGCAG; Rev: GAAAAAGCCATACCAATGGGC). Reactions were denatured at 95�C for 3 min, cycled five

times for 95�C for 20 s, 55�C for 30 s, and 72�C for 1 min, and then cycled 20 times for 95�C for 20 s, 60�C for 30 s, and 72�C for

30 s.

One microliter of each cell’s PCR0 reaction was used as template for the proceeding PCR1 reaction. Reactions for PCR1 and 2

were carried out as described above in the section ‘‘Determining profiles for integrated hgRNAs’’, with each single cell continuing

to be amplified and indexed as an individual sample. After PCR2, the reactions for each terminal cell type were normalized and pu-

rified together to create one combined sequencing library per terminal group. Libraries were quantified using the Qubit dsDNA HS

Assay Kit (ThermoFisher) sequenced on a MiSeq System using Miseq Reagent Micro Kits (Illumina).

Determining actual progenitor population size from in vitro experiments
For each experiment, brightfield images were taken of P5, P4, and P3 wells just before passaging (Figure S6). To estimate the cell

numbers at each progenitor state, images were analyzed in ImageJ. Outlines were drawn around 5 different cells within a colony

and their average area was measured. All colonies within a well were then outlined and the total combined area of the colonies

was measured and divided by the average cell area of a cell to estimate the total number of cells present in each well.

Processing of in vitro experimental data
Identifier and spacer sequence pairs were extracted for each sample using the initial step (BLAST search) detailed in the published

pipeline.30 For cells that were sequencedmore than once, pair counts for unique ‘‘identifier + spacer’’ were first merged for each cell.

The merged data were then provided as input to the remainder of the pipelines for sequencing error correction and filtering.

A total of 32 hgRNAswere identified from the filtered results, each observed inmore than 921 cells. Sequencing errors among iden-

tifier sequences were first corrected. For each identifier sequence that was not one of the 32 hgRNAs observed in the unmutated

sample, if the identifier sequence was within a hamming distance of 1 to any true identifiers, its spacer counts were merged with
e14 Cell 185, 4604–4620.e1–e16, November 23, 2022
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that of the known hgRNA’s. After the correction, no other identifiers other than the 32 known hgRNAs were observed in more than

3 cells.

Spacer sequencing errors were corrected next. First, the error reads within each cell and hgRNA combination were corrected. In

one of our sequencing runs, one cycle of sequencing returned ‘N’ for all spacer sequences. These errors were computationally cor-

rected: if there existed another spacer sequence for the same identifier and cell that was exactly the same except for the ‘N’ base pair,

the count of the error spacer with the ‘N’ base wasmerged with the other spacer. Next, the spacer sequencing errors across different

cells were corrected. Again, the error involving ‘N’ base pairs were further corrected across the cells using the same criteria as the

within cell correction.

Each allele was labeled as unmutated or mutated by comparing the spacer sequences to that of the reference sequencing result,

that is, if a spacer sequence was observed in the parent for the same identifier, it was labeled as unmutated. One identifier

‘‘GCCAAAAGCT’’ did not amplify in the parent data, and the sequence ‘‘GAAACACCGGTGGTCGCCGTGGAGAGTGGTGGGGTTA

GAGCTAGAAATAG’’ was identified as the unmutated spacer based on alignments of its different observed alleles.

Noisy reads were further filtered for cell + hgRNA combinations that had more than one spacer observed. If the most abundant

spacer was at least four times more abundant than all the other spacer reads observed, only the most abundant spacer was

kept. All the spacer counts with fewer than five total reads were also excluded.

After processing, 1197cell + hgRNAcombinationsout of the total 54,012 (2.2%) still hadmore thanonespacerobserved. Ifmore than

two spacers were observed for more than two hgRNAs in a single cell, the cell was likely a doublet. 33 such cells were identified and

filtered. Each cell had amedian 25 out of 32 hgRNAs detected. Each hgRNAwas detected in a median of 83%of all cells (Figure S7D).

Before reconstruction, non-informativecells andhgRNAswerefilteredout.AnyhgRNAwith adiversity of one, that is, all cells inwhichan

hgRNAwasobserved had the same allele, was considered non-informative andwas excluded. An allelewas considered informative if it

wasmutated and observed inmore than one cell in each group, and cells with less than three informative alleles were filtered out. In all,

970out of 1051 cells for 31 hgRNAspassed the filters for E1 and943out of 1032 cells for 29 hgRNAs passed filters for E2. For Phylotime

reconstruction, naive estimates for mutation rate and uniform prior for mutant allele emergence probabilities were used.

Simulation and ground truth fate map of in vitro experiment
To conduct simulations that best resembled the in vitro experiment, the effective cell division rates during the experiment were first

determined. First, the division rate of P5 was chosen so that the population size at the first split is the most consistent with what was

observed. Next, we assumed that cells were split in proportion to the volume of the suspension as P5 was split into P3 and P4. The di-

vision rateofP3andP4wereset so that their respectivepopulation sizesat thesplit agreedwithwhatwasobserved.Thedivision rate for

P1, P2 and all the terminal cells were set to once every 20 h. The exact division rate chosen and the population size at each stage are

detailed inFigureS7B.Notice that the commitment happensonecell divisionprior to thewell split, so theground truth commitment time

is one cell division earlier than the spit time, and the progenitor field size is half of what was observed in the well at the split.

To simulate hgRNAbarcodes from ground truth fatemap,mutation rates were estimated from the time course data of bulkmutated

fractions from the iPSC line. For mutant allele emergence probabilities, predictions from inDelphi were used.

QUANTIFICATION AND STATISTICAL ANALYSIS

Estimation of mutagenesis parameters in MARC1 mice
To get posterior estimates of mutation rates of MARC1 hgRNAs (i.e., l, rate of the Poisson process), a grid search was conducted to

match empirical distributions of mutated fractions among simulated and observed data across several embryonic time points. Pre-

viously reported hgRNAs formed three classes: the ‘slow’ class generated mutations on the order of 0.001 mutations/day, ‘interme-

diate’ class generated �0.1 mutations/days, and fast class generated �1.0 mutations/day during early mouse development. The

‘slow’ and ‘fast’ estimates expectedly had large uncertainties as most observed fractions are close to 0 or 100 percent mutated.

Alternatively, a naive estimate of mutation rate can also be used. If mutated fractions Fi were observed at time Ti in animal i for

i = 1;.;N, then bl = 1
N

PN
i = 1

� 1
Ti
logð1 �FiÞ is a naive estimate.

For mutant alleles of a barcoding site, estimating the probabilities of individual repair outcomes created by Cas9 DNA break-repair

(mutant emergence probabilities) was challenging. Normally, the fraction of cells carrying a particular mutant allele among all cells

with a mutated allele (within-animal estimates) is a good estimator of the allele emergence probabilities. However, when cells divide

and mutate starting from a small field size, these fractions are largely affected by the time of the mutagenesis events, as early events

result in larger clones carrying the same exact mutation. On the other hand, when hgRNA genotypes are observed for multiple an-

imals, the fraction of animals that carry a particular genotype, once normalized, and when the probability is small, can be good es-

timates to themutation probabilities (across-animal estimates) (Figures S4B and S4C). In this case, the estimation accuracy depends

on the number of animals analyzed. From the MARC1 time course data, the within-animal estimates were calculated for each animal

and averaged, and the across-animal estimates were calculated based on 173 embryos from 2mouse lines. To get a more complete

profile of possible mutant alleles and their occurrence probabilities for each hgRNA, we adapted the inDelphi machine learning al-

gorithm to predict CRISPR-Cas9 mutation results31 for hgRNAs. We observed that the inDelphi-predicted probabilities agreed
Cell 185, 4604–4620.e1–e16, November 23, 2022 e15
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well with the across-animal estimates from MARC1, but poorly with within-animal estimates (Figure S4B). Further, the fact that the

majority of the low probability mutationswere not observed in anymouse suggests that the limited number of hgRNAmutation events

during mouse development does not sufficiently cover a large portion of the mutational profiles. These conclusions were further vali-

dated by simulating multiple animal lineage barcode data based on inDelphi-predicted mutational profiles and comparing the within-

and across-animal estimates from the simulated data of the true parameters (Figure S4C).

InDelphi predictions of hgRNA allele emergence probabilities
The emergence probabilities of hgRNAmutant alleles were computed by inDelphi. inDelphi is a machine learning algorithm to predict

heterogeneous insertions and deletions resulting from CRISPR/Cas9 double-strand break.31 In this study, inDelphi model trained

with the mouse embryonic stem cell mutation dataset was used to predict the probabilities of hgRNA mutants from MARC1 mice.

The original 64 hgRNA sequences in MARC1 mice were used as inputs. Since Cas9 nuclease cuts 3 bp upstream of the Protospacer

AdjacentMotif (PAM, NGG sequence),1 the possiblemutations from the cut site at�3 bp from the PAMsequencewere computed. To

take into account the repeated targeting of hgRNAs, inDelphi is first applied to predict a set of first-round mutations. Subsequently,

the resulting first-roundmutations were used as inputs to the next round of inDelphi predictions. Notably, onlymutant sequenceswith

>16 bp protospacer and PAM were subject to the second-round analysis as gRNA without >16 bp spacer sequence loses its activ-

ity.53 Here, the probabilities of the next generationmutants were computed bymultiplying the probabilities of themutant in the current

round by the probabilities of the mutant in the previous round. Repetitive application of inDelphi produces exponentially growing

numbers of potential mutant alleles. Therefore, the analysis was limited to three cycles, resulting in first to third generations of mu-

tants. The same mutation can be created in multiple rounds, in such cases, the probabilities from multiple rounds were summed.

Finally, probabilities of all mutant alleles were normalized to have a sum of one. The inDelphi predictions for hgRNAs are provided

on Zenodo (see Key Resources Table).

Assessing accuracy of progenitor state parameter estimates with RMSE
As a measurement of accuracy for the progenitor state parameter estimation, that is commitment time, progenitor population size

and commitment bias, the root-mean-square error (RMSE) was used to quantify the amount of error in parameter estimation. The

root-mean-square error is defined as

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

I

XI

i

ðbxi � xiÞ2
vuut
where the i index is over the number of progenitor states in the rec
onstructed fate map, xi is the true parameter and bxi is its estimate.

For progenitor population size, RMSE was computed for the log2 transformed population sizes. In cases where the reconstructed

topology is used to assess parameter estimation accuracies, only the inferred progenitor states that could be correctly mapped

to the truth were included. In cases where the true topology was used to assess parameter estimation accuracies, the RMSE is

over all the progenitor states. Note that combining all progenitor states irrespective of sampling fraction inflates the RMSE values.
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Figure S1. Topological diversity and distribution of various parameters in the quantitative fate map panel, related to Figure 1

(A) Principal coordinate analysis of KC0 distances between all fate map pairs in each size category showing the fate maps occupy a broad space of topologies.

Only the first two dimensions are plotted. Each dot corresponds to one fatemap and its color indicates how themap topology was initially generated based on the

key to the right and as described in STAR Methods. TBR: tree bisection and reconnection.

(B) Same as A, except each fate map’s dot is colored based on its Colless imbalance index according to the color key to its right. While Dimension 1 corresponds

to imbalance, variation in Dimension 2 suggests that the fate map panel covers other unquantified aspects of topological diversity.

(C) Histograms showing the distribution of Colless index in fate maps of each size category. The histograms show that fate maps in the panel are well-distributed

in a wide range of imbalance. For all panels, the 16, 32, and 64 terminal type categories are shown on the left, middle, and right respectively; ‘N’ indicates the

number of fate maps in each category. Panels A–C show the topological diversity of the fate map panel. Distribution of various parameters in the quantitative fate

map panel.

(D) Distribution of progenitor state commitment times for each fate map size category shown as rank ordered boxplots. For each boxplot, line marks the median

and whiskers extend to the furthest data point within 1.5 times the interquartile range.

(E) Distribution of progenitor state commitment bias for all progenitor states in all fate maps shown as a histogram. Commitment biases were drawn from a beta

distribution (a = 5; b = 5). However, a requirement was set for each progenitor state to be founded by at least four cells. The peak around 0.5 is a consequence

of this requirement which forces small progenitor populations to assume biases closer to 0.5 (e.g., a committing progenitor population splits 4:4 if it has 8 cells in

total, it will split 4:5 if it has 9 cells, it will split no more unequally than 4:6 if it has 10 cells in total, and so on).

(F) Plot showing cell doubling time distribution as a function of fate map time. Each black dot represents one progenitor state. Trendline (LOESS) is shown in blue.

For a given embryonic time in fate maps, progenitor state doubling times are drawn from a uniform distribution; however, overall division rates become faster

during embryogenesis.54 Therefore, the underlying distribution for doubling times moves to shorter times as fate maps progress. All divisions before the first

commitment, which occurs at day 2.4, proceed at a rate of 0.6 per day. Afterward, division rates are drawn from uniform distributions as shown.

(G) Distribution of cell division rate for all progenitor states and terminal types in all fate maps shown as a histogram.

(H) Distribution of cell death rates per division for all progenitor states and terminal types in all fate maps shown as a histogram. Cell death probability was set to

0 until day 2.4 and then drawn from a uniform distribution between 0.02 and 0.08. These rates are based on rates reported during mouse embryogenesis.24

(I) Distribution of population size at the time of commitment for all progenitor states in all fate maps shown as a histogram.

(J) Distribution of total cell numbers for all fatemaps as a function of time. The blue line signifies the average for all fatemaps and the gray lines show each fatemap

and thus represent the range. Red dots represent the total number of cells in a mouse embryo,54 showing general agreement in total number of cells between

actual mouse embryogenesis and the fate maps simulated here.

(K) Histogram showing the average number of FASEs detected per pair of terminal types in our panel of 3,310 simulated phylogenies with 100 cells sampled from

each terminal cell type. These phylogenies have an average of 4.4 FASEs per pair of terminal cell types.

(L) Scatterplots showing the average time between progenitor state commitment events as a function of imbalance (Colless index) broken down by fate map size,

showing more imbalanced maps have commitments that are closer to each other. Blue line shows the fitted linear model.
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Figure S2. Generative model of sampled cell phylogeny, related to Figure 1 and STAR Methods

(Step 1) Generating a count graph using forward propagation. Part of the count graph where progenitor state Pi proliferates and commit to downstream states Pj

and Pk is shown. Several instances of process 1 (proliferate-only process) and one instance of process 2 (commit and proliferate process) of the count graph are

included. Horizontal lines represent time, in between horizontal lines are time windows during which the two processes take place. Different count nodes are

listed. The black square node is the default count node. The rounded colored nodes are sub-count nodes. For process 1, the proliferation modes include: D:

doubling, N: non-doubling, L: dying and DD: doubled. For process 2, Pi state cells commit to become downstream Pj and Pk state cells, sub-count nodes include

Pi-PjPj, Pi-PjPk and Pi-PkPk. Four types of operations on the count nodes are listed in the box on the left labeled ‘‘Operations’’; input is colored teal and output is

colored brown, parameters to each operation are colored black.

(Step 2) Generating sampled terminal and progenitor cells counts using backward propagation. Given the counts of each (sub-)count node from Step 1, sample

size for each count node was generated (lemon-colored number after comma in each node) using the four reverse operations shown in the box on the right.

(Step 3a) Reorganizing count graph. The count nodes at each time point were reorganized before phylogeny generation. Two examples of reorganizing process 1

and process 2 were given. Sub-count nodes after reorganization include: C: coalesced, NC: non-coalesced and CI: coalescing for process 1, and Pi-PjPj,

Pi-PjPk, Pi-PkPk, Pi-Pj and Pi-Pk for process 2. The count graph after reorganization is given on the right.

(Step 3b) Listing tree nodes in the phylogeny. Sampled cells from different sub-count nodes are listed as ‘tree nodes’. One or two branches are attached to the

tree nodes based on the number of cells they give rise to at the next time point. Fill of tree nodes indicate their cell state, and color of outline of tree nodes indicate

which sub-count nodes they are from.

(Step 4a) Connecting tree nodes. Cells at each time point were connected randomly to open branches at the previous time point to generate the cell phylogeny.

(Step 4b) Simplifying tree phylogeny. The phylogeny is simplified by deleting nodes that do not give rise to two sampled cells at the next time point.
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Figure S3. Accuracy and sources of error in estimating quantitative fate map parameters from time-scaled phylogeny, related to Figures 2

and 3

(A) Line plot showing FASE distance error as a function of progenitor state sampling fraction for all pairs of terminal types in the panel of 3,310 simulated

phylogenies (Mean ± SD; n is variable). Dots in the background represent a random sampling of 500 individual values from each set to show the distribution.

(B) Boxplots showing the distribution of sampling fraction as a function of time in the panel of 3,310 simulated phylogenies.

(C) Example phylogenetic subtree, showing how undersampling can lead to FASEs appearing earlier in the tree (pink circles) than they really are (green circles).

Gray circles: unsampled cells.

(D) Boxplots of fate map topology reconstruction error (KC0) as a function of the average number of cells sampled per terminal type in fixed (left) and proportional

(right) sampling schemes in our panel of 16 terminal type fate maps. p-values from Wilcoxon rank-sum test: **p < 0.01, ***p < 0.001.

(E) Heatmap showing the agreement between inferred states and true states of all internal nodes in the phylogenetic tree shown in Figures 1D and 3A. Each

rectangle represents the fraction of all nodes in the phylogenetic tree belonging to the true state shown on the left that were assigned the inferred state on the

bottom. These results show that the only observed form of error is assigning a node to a state less potent than its true state.

(F) Histogram of the average accuracy of progenitor state node assignment to internal nodes of the phylogenetic tree across the panel of 3,310 phylogenetic trees

showing that, on average, 72.3% of nodes were assigned to the correct progenitor state, the rest were assigned to states with lower potency.

(legend continued on next page)
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(G) Schematic example of a phylogenetic tree, showing how undersampling can lead to a node being assigned a progenitor state with less potency than its

true state.

(H) Scatterplot of population size estimate error for progenitor states as a function of their sampling fraction (top) aligned to a histograms of sampling fraction for all

progenitor states in fixed or proportional sampling schemes (bottom). The vertical dashed line shows sampling fraction cutoff of 0.25 for separating well-sampled

and undersampled progenitor states. Trendline (LOESS) for the correlation is shown in blue. The plot shows that population size is estimated more accurately for

progenitor states that have higher sampling fraction.

(I) Scatterplot of commitment bias estimate error for progenitor states as a function of their sampling fraction (top) aligned to a histogram of sampling fraction for all

progenitor states in our panel (bottom). Error is the absolute value of the difference between inferred and true commitment biases. The vertical dashed line shows

sampling fraction cutoff of 0.25 for separating well-sampled and undersampled progenitor states. Trendline (LOESS) for the correlation is shown in blue. The plot

shows that commitment bias estimate error approaches 0 as sampling fraction approaches 1.
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Figure S4. Comparing barcoding outcomes between simulations and MARC1 mice, resolving time-scaled phylogenies, and assessing the

effect of barcode site mutation rates, related to Figures 4 and 5

(A) Heatmap showing the posterior probabilities of mutation rates for all MARC1 hgRNAs. Each row corresponds to one of the 64 active MARC1 hgRNAs and

represents its estimated posterior probability according to the color key on the bottom right. The axis and on top of the heatmap show the values of per-day

mutation probabilities. The first sidebar to the right of the heatmap marks the initial characterization label of the hgRNA as either fast (green), intermediate

(orange), or slow (slate blue).30 The second sidebar marks the origin of the hgRNA as either the PB3 founder (dark navy) or the PB7 founder (purple) mouse.30

These values were estimated from published embryonic time course mutation analysis data30, as described in STAR Methods.

(B) Comparison of mutant allele emergence probability estimates of our modified inDelphi algorithm to those estimated from MARC1 mouse embryos by taking

either abundance within the embryo when the allele is present (right) or fraction of embryos that present the allele (left). Blue dots represent predicted alleles that

were observed in MARC1 embryos, gray ones were predicted by modified inDelphi but not observed in embryos. Alleles observed in embryos but not predicted

by inDelphi, which were a small fraction, are not shown. Gray line has intercept 0, and slope 1. These results suggest that our modified inDelphi algorithm can

recapitulate the actual distribution of MARC1 hgRNA allele emergence probabilities.

(C) Comparison of the true mutant allele emergence probabilities used for simulation (x axis) with their average observed fraction in simulated mouse embryos

(right) and fraction of simulated embryos that showed the allele (left). The true mutant allele emergence probabilities were obtained from our modified inDelphi

algorithm (see STAR Methods). Blue dots represent alleles that were observed in simulated embryos, gray ones were possible in simulation by not observed in

simulated embryos. Simulations were conducted 100 times for 9 time points. Gray line has intercept 0, and slope 1. Combined with B, these results show that our

simulations of the barcoding process recapitulate the mutant allele emergence patterns in barcode mouse embryos. Together, B and C further show that es-

timations of allele emergence probability based on allele occurrences across multiple samples outperform average allele fraction in both simulation and MARC1

mouse data.

(D) Line-plots showing themutated fraction of MARC1 barcoding sites over time in observed (left) and simulated (right) embryos for fast, mid, and slow categories

of mutation rates. Means ± SEM are shown. Each barcoding site is colored according to its mutation rate using the color scale on the right. These plots show that

the distribution of mutated fractions over the course of embryogenesis agrees between simulated and experimental results for hgRNAs with a range of muta-

tion rates.

(E) Boxplots showing the number ofmutant alleles for eachMARC1 barcoding site over time in observed (left) and simulated (right) embryos for fast, mid, and slow

categories of mutation rates. Each barcoding site is colored according to its mutation rate using the color scale shown in panel D. The boxplots for ‘‘observed’’

column look sparser because some hgRNAs had not segregated to any of the embryos analyzed at a given time point. These plots show that the total number of

distinct mutant alleles (i.e. the mutant allele diversity) during embryogenesis were consistent between experiments and simulations.

(F) Line-plots showing the average mutant allele diversity as a function of barcoding site mutation rate for observed (blue) and simulated (purple) embryos.

Means ± SEM are shown. These plots show that, similarly in both experimental and simulated results, the diversity of mutated hgRNA alleles increases as the

hgRNAmutation rates increase because there are more mutagenesis events; however, at the fastest mutation rates, barcoding sites reach 100%mutated when

there are fewer total cells, and the total diversities drop as a result.

(G) Line-plots showing the prevalence of amutant allele among all mutant alleles as a function of its rank in observed (blue) and simulated (purple) embryos. A rank

of one denotes the most abundant allele. Means ± SE are shown. These plots show that the compositions of mutant alleles within embryos agree between

simulated and observed embryos because, after ranking all mutant alleles based on their frequencies, alleles of similar rank account for similar percentages of the

mutated cells.

(H) The two-cell model. An Illustration of a phylogenetic model with two terminal cells used to estimate their distance since their most recent common ancestor

(MRCA). N1 is the MRCA of the two cells. T is time from root to sampling. tN1
is the time from root to MRCA.

(I) Scatterplot showing the correlation between the Phylotime-inferred and the true cophenetic distances between all pairs of cells in Figure 4C, showing a high

level of agreement between Phylotime-inferred and true cophenetic distances. Black line is y = x.

(J) Lineplots showing the performance of quantitative fate map reconstruction, measured by the error of topology, commitment (cmt) time, population size, and

commitment (cmt) bias estimates, as a function of the number of hgRNA barcoding sites and their mutation rates (Mean ± SEM; N = 3,310; SEM very small). The

table to the right shows the average and range of barcoding site mutation rates in each condition. Line colors signify the range and average of barcoding site

mutation rates according to the table on the bottom. The mutation rate per cell division was calculated based on the average cell cycle length of 0.45 days

(Figure S1F). T on X axes: value using true phylogeny.
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Figure S5. Effect of experimental errors, late sampling, cell death, and asymmetric divisions on quantitative fatemapping, related to Figure 5

(A–D) Line graphs showing the performance of quantitative fate map reconstruction, measured by the error of topology (A), commitment (cmt) time (B), population

(pop) size (C), and cmt bias (D) estimates, as a function of allele dropout (green) and allele switching (orange) error levels. Mean ± SEM is shown, SEM too small to

be seen. The gray dashed line in panel A marks the error of randomly generated fate map topologies. Allele dropout results in when a fraction of barcoding sites

not to be detected in each single cell. This form of error is common in experiments where barcoding sites are directly amplified from a single cell’s genome or

transcriptome.8 Allele switching occurs when an allele from one cell is assigned to another. This form of error can emerge if template switching takes place during

barcoding amplification, a possible outcome for synthetic barcoding loci that have a high degree of homology.30 Both forms of error steadily degrade the ac-

curacy of quantitative fate mapping; however, allele switching is more detrimental for quantitative fate map reconstruction. For example, panel A shows that 30%

missing alleles produces fate map topologies that are, on average, as accurate as those produced with 20% allele switching. Additionally, panel B shows that the

effect of allele switching on commitment times is themost drastic, with 10%allele switching producing, on average, asmuch error as 50%missing alleles. Overall,

commitment times show the highest sensitivity to experimental error. For example, 5%allele dropout led to a 3%, 3%, and 7%error increase in average topology,

population size, and commitment bias estimates respectively but a 21% error increase in average commitment time estimates. Similarly, 5% allele switching led

to a 3%, 6%, and 16% error increase in average topology, population size, and commitment bias estimates respectively but a 53% error increase in average

commitment time estimates. These observations suggest that missing alleles can bias branch lengths in the time-scaled phylogeny generated by Phylotime.

These results further suggest that while the accuracy of estimates declines with increasing experimental error, quantitative fate mapping algorithms can tolerate

errors and behave stably in response.

(E) An example quantitative fatemap showing how the panel of 16-type quantitative fatemapswere sampled at five points in time, representing scenarioswherein

a progenitor field is studied by obtaining its descendant cell types immediately after its development or later. Phylogeny and barcoding with 50 hgRNAs were

simulated for all 16-terminal type fate maps in the panel in Figure 1C while sampling 100 cells from each terminal type at day 11.5, 12.5, 13.5, 14.5, or 15.5 of

development, repeating each condition twice (53 fate maps x 2 sampling strategies x 2 repeats). Phylotime and ICE-FASE were then applied to obtain a

quantitative fate map in each case.

(F–I) Line graphs showing the performance of quantitative fate map reconstruction from lineage barcodes as a function of sampling time in our panel of

16-terminal type fate maps for proportional (green) and fixed (blue) sampling strategies, measured by the error of topology (F), commitment (cmt) time (G),

population (pop) size (H), and cmt bias (I) estimates.Mean ± SEM is shown. Panels F andH indicate that the accuracy of topology and progenitor state population

size estimates remain unchanged in all sampling times. Panel I shows that the accuracy of commitment bias estimates remain independent of sampling time only

under fixed sampling but deteriorated under proportional sampling. This degradation in proportional sampling is expected because this sampling strategy gains

additional information about the commitment bias of undersampled progenitor states from their terminal population sizes (Figures 3L and 5B). However, with

terminal types proliferating at different rates, this information decays over time, and unless the progenitor states are well-sampled, proportional sampling

gradually loses its inherent advantage. Panel G shows that the accuracy of commitment time estimates deteriorated for both fixed and proportional sampling.

(J–M) Line graphs showing the performance of quantitative fate map reconstruction from true phylogeny as a function of sampling time in our panel of 16-terminal

type fate maps for proportional (green) and fixed (blue) sampling strategies, measured by the error of topology (J), commitment (cmt) time (K), population (pop)

size (L), and cmt bias (M) estimates. Mean ± SEM is shown. When compared with panel G, panel K suggests that time estimate errors when using inferred

phylogeny are due to the accumulation of mutations after final commitment as these estimates stay steady when using true phylogeny. Such mutations—that is

those that occur after commitment—would not inform cell fate but can affect Phylotime’s estimates of branch length and thus alter time estimates derived from

cell phylogeny, especially when barcode homoplasy is prevalent (i.e., same allele independently emerging in two cells). Therefore, the error observed when using

inferred phylogeny is a barcoding artifact. Surprisingly however, while progenitor population size and commitment bias estimates depend on commitment time,

they do not deteriorate in accuracy, as shown by panels H and I, even when this barcoding artifact results in a large error in commitment time estimates. This

observation indicates that the barcoding artifact leads to isometric stretching or shrinking of the phylogenetic tree, biasing the absolute times of commitment but

not the relative times of commitment. Taken together, panels F–M suggest that quantitative fate mapping is robust to sampling time. In other words, a progenitor

field may be assessed by sampling its terminal cell types or the descendants of those terminal cell types at any point in time. However, with more elapsed time,

barcoding artifacts can accumulate and reduce the accuracy of absolute commitment time estimates without affecting the relative commitment time estimates.

Moreover, these results show that once the fate of a progenitor state is recorded in the mutations it accumulates, that information may be recovered at any later

point in time.

(N) An example quantitative fate map highlighting the progenitor states (orange) and terminal types (blue) in which an increasing level of cell death was tested.

Increased cell death probability was instituted for all fate maps with 16 terminal types. One experiment with 50 hgRNAs that collects 100 cells was conducted per

fate map. Cell death probability per division was set between 0.1 and 0.4 with 0.05 increments for either all terminal types or all progenitor states with at least 500

cells at their times of commitment. Phylogenies and barcoding outcomes were then simulated and Phylotime and ICE-FASE were applied to reconstruct fate

maps in each case.

(O–S) Line graphs showing the performance of quantitative fate map reconstruction as a function of cell death rate in progenitor state (orange) or terminal type

(blue) in our panel of 16-terminal type fate maps, measured by the error of topology (O), commitment (cmt) time (P), population (pop) size (Q), and cmt bias (R)

estimates. Mean ± SEM is shown. The blue lines show that increasing rates of cell death in terminal types from 10% to 40% has a relatively small effect on

reconstruction accuracy, leading to an increase in estimation error for topology (KC0 difference of 1.4) and commitment bias error (0.03 difference in RMSE)

without any significant effect on commitment time and population size. This result suggests that a non-random subsample of a terminal type’s downstream

populations may still be used to analyze its progenitor’s fate (e.g., progenitors of ectoderm, which leads to surface ectoderm and neuroectoderm, may be

analyzed by sampling only surface ectoderm and assuming all neuroectoderm cells underwent death). The orange lines show that increasing cell death in

progenitor states consistently reduce error of commitment time (45% when comparing 0.1 to 0.4 death probability; Wilcoxon p value < 0.01), population size

(150%;Wilcoxon p value < 0.01), and commitment bias estimates (16%;Wilcoxon p value < 0.01) (S) Line graph showing the fraction of undersampled progenitor

states (sampling fraction <0.25) as a function of increasing cell death rate in progenitor states (orange) or terminal types (blue). Mean ± SEM is shown. The graph

shows that cell death in progenitor states, which reduces their population size, effectively increases their sampling fraction and reduces the prevalence of

undersampled progenitor states. Panels O–S combined suggest that cell death in progenitor states allows the limited sampling power to be distributed among

cell divisions with actual fate implications. By contrast, cell death in the terminal types distributes more sampling power to cell divisions after the last cell fate

commitment which do not contain fate information. Cell death, as simulated here, is effectively a form of non-random sampling where progenitor cells that are

dead can be thought of as having committed to lineages that are not subject to sampling. Therefore, these observations also suggest that designing sampling

approaches that strategically bottleneck the effective progenitor population size (e.g., sampling only one side in a bilaterally symmetric system) can help

overcome challenges associated with large progenitor populations and lead to more accurate estimates of fate.

(legend continued on next page)
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(T) Topology of the quantitative fate map in which commitment via symmetric and asymmetric divisions were compared. Phylogeny and barcoding outcomes

were simulated for this fatemapwith commitments happening with either asymmetric divisions or symmetric divisions exclusively. For the asymmetric mode, one

daughter cell commits to the downstream terminal type and the other commits to the downstream progenitor state after commitment. For the symmetric mode,

each cell randomly commits to one of the downstream fates based predefined probabilities and subsequently undergoes symmetric divisions. In each case, one

hundred experiments with 50 hgRNAs and 50 cells sampled from each terminal type were simulated. Phylotime and ICE-FASE were then applied to obtain

quantitative fate maps in each case.

(U,V) Example of simulated phylogenetic tree for 50 cells sampled from each terminal cell type in T when commitments take place exclusively with symmetric (U)

or asymmetric (V) divisions.

(W–Z) Boxplots comparing the performance of reconstruction for the quantitative fatemap in T in 100 simulated experiments with either symmetric or asymmetric

commitments, measured by the error of topology (W), commitment (cmt) time (X), population (pop) size (Y), and cmt bias (Z) estimates. Wilcoxon rank-sum p

values are shown: ***p < 0.001. The plots show that commitment via asymmetric division results in a significantly more accurate reconstruction of fate map

topology as well as progenitor commitment time and population size. For example, topology is perfectly resolved 20% of times with asymmetric division

commitments but only 5% of time with symmetric commitment. However, panel Z shows that asymmetric divisions lead to an increase in average commitment

bias error from 0.15 to 0.21. The improvement in topology, commitment time, and population size estimates can be attributed to the fact that all commitments via

asymmetric division result in FASEs in the phylogeny. In comparison, only a fraction of commitments via symmetric division by chance result in FASEs in the

phylogeny. Overall, these results indicate that quantitative fate mapping is applicable to asymmetric cell divisions and that fate mapping is facilitated when more

cell divisions are associated with fate decisions. Commitment bias estimate error, unlike all the others, is smaller for symmetric versus asymmetric division. This

decline in the accuracy of commitment bias estimates is attributable to a reduction in sampling fraction when commitments take place via asymmetric divisions.

The commitment bias estimate is affected by howmany cells are sampled on each side of a bifurcation in the fate map topology, skewing the estimate toward the

side with more cells sampled. In the case of fixed sampling on a pectinate topology, as simulated here, the imbalance of sampling is very large, particularly for

earlier commitments. For example, in a 16-terminal type pectinate fate map, the first bifurcation has 15 times fewer cells sampled on the side committing to a

terminal cell type compared to the other. When the sampling fraction is low, progenitor states are affected to a greater extent by such imbalances, and when cells

are committing via asymmetric division, the sampling fraction is lower compared to committing via symmetric division due to the fact that the effective

commitment time of asymmetric divisions is later than that of the symmetric counterpart (Definition of commitment time and progenitor population size). To

validate this hypothesis, we defined a new parameter based on the true simulated phylogeny: sampled commitment bias, which is the proportion of sampled cells

in a progenitor state that commit to each downstream fate. When we compared the estimated commitment bias to the sampled commitment bias instead of the

progenitor state commitment bias, the simulated experiments with asymmetric divisions showed a better agreement. In fact, the RMSE of commitment bias

compared to sampled commitment bias was smaller for the asymmetric division by 15% (Wilcoxon rank-sum test p value = 2.3e-10). These observations indicate

that specific structure of a pectinate topology, which leads to a large difference between true commitment bias and sampled commitment bias, combined with

the lower effective progenitor state sampling fraction in asymmetrically committing progenitor states, underlies the smaller commitment bias estimate error for

symmetric commitments compared to asymmetric commitments as observed in panel Z here.
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Figure S6. Effect of commitment over an extended time period and progenitor trifurcation on quantitative fatemap reconstruction, related to

Figure 5

(A) Graph showing the quantitative fate map in which commitment over a more extended time period was modeled for P11. Three fate maps with the topology

displayed here and identical in all but one parameter were created. The only difference is that P11 (elongated green rectangle) commits to its downstream states

(P1 and P9) between day 5.8 and 6.3 in the first map, between day 5.8 and 6.9 in the secondmap, and between 5.8 and 7.5 days in the thirdmap. Phylogenies and

barcoding with 50 hgRNAs were then simulated based on these fate maps with fixed sampling of 100 cells from each terminal with one hundred times for each.

Phylotime followed by the ICE-FASE algorithm were then applied to reconstruct topology in each case.

(legend continued on next page)
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(B) Line graph showing the performance of quantitative fate map topology reconstruction from lineage barcodes using ICE-FASE algorithm as a function of the

length of P11’s commitment window in the fate map shown in A. This panels shows that reconstructing the topology of the fate map incurs a small but significant

decline with the longest commitment window. (Mean ± SE is shown)

(C–E) Line graphs showing the error of commitment (cmt) time (C), population (pop) size (D), and cmt bias (E) estimates for progenitor states P1 (red), P9 (purple),

P11 (green), and P13 (cyan) as a function of the length of P11’s commitment window in the fate map shown in A. P1, P9, and P13 are all the downstream and

upstream progenitor states of P11 in the fate map. Mean ± SEM is shown but SEM is too small to be visible for some data points. The error for estimating the

quantitative parameters for P11 and its upstream and downstream states (P1, P9, and P13) remains generally consistent irrespective of the length of its

commitment window. These results indicate that the ICE-FASE algorithm can resolve progenitor states that gradually commit over a window of time.

(F) A pair of quantitative fate maps that are identical except that in one (left) progenitor state P11 undergoes two bifurcations before generating T1, P5, and P6 and

in the other (right) the equivalent progenitor state P11* undergoes a trifurcation before generating T1, P5, and P6. In each case, one hundred experiments with 50

hgRNAs and 100 cells sampled from each terminal type were simulated. All progenitor states in both maps are labeled, only terminal types relevant to the rest of

the analysis are labeled (T1–T9).

(G) Example (2 out of 200) quantitative fatemaps reconstructed using ICE-FASE from lineage barcodes that were simulated for each original quantitative fatemap

in panel F, one based on the original fully bifurcating map (left) and the other based on the original map with a trifurcation (right). The edge between inferred

progenitor states iP11 and iP8 is labeled in magenta for the resolved bifurcation (left) and in green for the resolved trifurcation (right). Only the relevant terminal

types are labeled. Similar to example shown on left, P11 and P8 were perfectly resolved in all 100 experiments with a bifurcating fate map, similar to the map on

the left. For maps in experiments with trifurcation, because the standard ICE-FASE algorithm reconstructs topologies based on hierarchical clustering of pairwise

FASE distances, it is expected to resolve the P11* trifurcation as two consecutive bifurcating inferred progenitor states in fate map topology. If correctly resolved,

the first (i.e., more potent, and upstream) inferred progenitor state replacing P11* should have an observed fate of {T1, T2, T3, T4, T5}, and the second (i.e., less

potent, and downstream) should have an observed fate of {T1, T2, T3}, {T2, T3, T4, T5}, or {T1, T4, T5}. Such a set of bifurcating progenitor states can be

considered an equivalent encoding of the original trifurcation as two bifurcations. By these criteria, the ICE-FASE algorithm correctly resolved the trifurcation as

two bifurcations in all 100 simulated experiments, similar to the example shown on the right. The two consecutive inferred progenitor states that ICE-FASE

resolves in place of P11* are labeled as iP11 and iP8. Note that equivalents of iP11 and iP8 exist in the reconstructed fully bifurcating map, representing P11

and P8, respectively in panel F left. These results suggest that the ICE-FASE algorithm can resolve multifurcations in fate map topology as consecutive

bifurcations.

(H) Boxplots showing the distribution of resolved iP8–iP11 edge lengths and all the other edge lengths in the 100 quantitative fate maps reconstructed from

barcoding results simulated based on the fully bifurcating original map (left) or the map with P11* trifurcation (right). Dashed line signifies the 0.45 days cutoff

applied for merging bifurcation in the ensuing steps. Boxplot features identical to Figure S1D. p-values from Wilcoxon rank-sum test: ***p < 0.001. In actual

trifurcations, state transitions into each of three downstream fates happen simultaneously. As a result, the consecutive candidate bifurcations that encode a

trifurcation should have a very short edge length between them. These plots show that the edge lengths between iP11 and iP8 in reconstructed trifurcating maps

are indeed significantly smaller than those in bifurcating ones.Moreover, they show that the edge lengths between iP11 and iP8 in reconstructed trifurcatingmaps

were significantly smaller than all the other edge lengths in those same maps. These observations suggest that an edge length cutoff, defined as a minimum

commitment time difference between two consecutive progenitor states, can be selected to merge close commitment events that are better considered as a

single multifurcation than multiple bifurcations. Accordingly, a cutoff of 0.45 days was chosen here.

(I) Reconstructed quantitative fate maps in panel G after applying a 0.45 days cutoff for merging close edge lengths. For the 200 experiments simulated as

described in panel F, a threshold of 0.45 days was applied to merge shorter bifurcations into multifurcations. In resulting reconstructed fate maps, a trifurcating

inferred progenitor state (iP11*) matching P11* emerged in 87%of all the experiments simulatedwith a trifurcation, one of which is shown in this panel on the right.

In comparison, only 1%of the iP11 became a trifurcation by these criteria in the bifurcating fatemap (not shown). However, across all 200 experiments, 0.93 other

trifurcations, on average, were created per experiment. These falsely identified trifurcations tend to involve progenitor states with close commitments or low

sampling fractions. For example, the falsely identified trifurcations included inferred progenitor states with the same potency as P9, P14, or P12 respectively for

51%, 23%, or 9% of all simulated experiments, as shown in the map on the left. These progenitor states have larger uncertainties associated with them due to

their transient nature or low sampling fraction. As such resolving them as trifurcationsmay represent amore conservative reconstruction of the fatemap topology.

These results suggest that the ICE-FASE algorithm can correctly resolve multifurcations in fate map topology given adequate sampling fraction and the selection

of an appropriate cutoff. These results further show that progenitor state multifurcation can be resolved as multifurcations instead of an equivalent set of

bifurcations.

(J,K) Histograms showing the distribution of iP11 or iP11* commitment time (J) and populations size (K) in the 100 experiments simulated based on a bifurcating

P11 (top) and the 100 simulated based on a trifurcating P11* (bottom). Solid vertical line marks the true value from the original quantitative fate map in panel F;

Dashed vertical line marks the mean of the values estimated from the 100 simulated experiments. ICE-FASE algorithmwas expanded to handle multifurcations in

fate map topology and applied to estimate iP11* from the 100 experiments simulated with the trifurcating P11* (STAR Methods). For comparison, ICE-FASE was

also applied to obtain the same parameters for iP11 from the 100 experiments simulated with the bifurcating P11.

(L) Stacked bar plots showing the estimated fraction of each downstream state or type that P11 commits to in the 100 experiments simulated based on a

bifurcating P11 (top) or P11* commits to in the 100 experiments simulated based on a trifurcating P11* (bottom). Bar colors match the downstream state as

labeled to the right of each plot. Solid horizontal line marks the true value from the original quantitative fate map in panel F; Dashed horizontal line marks the mean

of the values estimated from the 100 simulated experiments. Experimental details same as panels J and K. Together, panels J–L show that that the ICE algorithm

can resolve the quantitative parameters of the trifurcating iP11* almost as well as the bifurcating iP11. The RMSE for commitment time, population size, and

commitment bias of trifurcating iP11* were 0.18 days, 0.08, and 0.07 respectively, whereas they were 0.07 days, 0.04, and 0.07 respectively for the bifurcating

version. These results show that the ICE-FASE algorithm can properly estimate progenitor state dynamics for multifurcating progenitor states. Combined

together, the results in this section show that the ICE-FASE algorithm is robust to progenitor state multifurcations and can fully resolve them given adequate

sampling fraction.
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Figure S7. Features of the barcoding iPSC line and experiments with known barcoding parameters, related to Figure 7

(A) Mutated fraction of each hgRNA over time in the iPSC line after induction of Cas9 expression with Doxycycline. Color of each line shows the estimated

mutation rate of its corresponding hgRNA according to the key on bottom right. The list on the right shows the color of each hgRNA’s line on the plot.

(B) Cell division rates and progenitor population sizes in the ground truth fate maps for the E1 and E2 experiments. Numbers on the top right corner of each

progenitor state show its total population size estimated from bright field images shown in C. Numbers on the bottom of each terminal type show its estimated

population size from bright field images. The estimated doubling times, which represent cell division rates based on measured population sizes at different times

are shown on the top right of each map.

(C) Bright field images showing the P3, P4, and P5 progenitor population size estimates (columns) for E1 and E2 (rows). Scale bars for P5 images are 200microns.

Scale bars for P4 and P3 images are 400 microns.

(D) Boxplots showing the number of hgRNAs detected (out of the total 32) from analyzed single cells from each terminal well of each experiment. Line marks the

median and whiskers extend to the furthest data point within 1.5 times the interquartile range.

(E) Histogram of the fraction of cells in which each of the 32 hgRNAs was detected.

(F) Character matrices of lineage barcodes (left) and heatmaps of pairwise time since MRCA matrix from simulated single cells in E1 (top) and E2 (bottom) are

shown. The simulation includes 140 cells for each terminal type. For each hgRNA, the same level of allele dropout as in the read data was applied to the simulated

data. Only one of 100 simulation results is shows for each experiment. Phylotime-reconstructed phylogeny is shown aligned to the left. The type of each cell is

marked on the bar to the left of the phylogram and the color code is according to panel B. Other plot features are the same as Figures 4C and 4D.

(G) Barplots showing the prevalence of different outcomes of topology and commitment order reconstruction from experimental data (left) and simulated data

(right) for E1 (top) and E2 (bottom) as a function of number of cells sampled per terminal type. Color key on the bottom shows the reconstruction outcome. "Wrong

topology’’ indicates a wrong tree shape (KC0 > 0 between implemented and reconstructed fate map); ‘‘wrong ordering’’ indicates correct topology (KC0 =

0 between implemented and reconstructed fatemap) but the wrong order of commitment times excluding those involving wrong order for P1 and P2 as well as P3

and P4 which are included in the other four conditions in the color key.

(H,I) Boxplots comparing estimates of commitment time (H) and population size (I) in actual experiments (teal) and simulations (ruby) for P3 and P4 to the truth as a

function of number of cells sampled per terminal type. Yellow lines or boxes mark the ground truth.
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Figure S8. Using shuffling to generate random ordering of commitment events, defining commitment window, and imputing missing data

using machine learning, related to STAR Methods

(A) Illustration of two random shufflings at the root bifurcation of the tree. All solid circles are interchangeable and all hollow circles are interchangeable. A shuffling

is a random ordering of solid and hollow circles. Reproduced with permission from Ford et al.48

(B) Illustration comparing commitment by symmetric division to commitment by asymmetric division. For symmetric division, all cells at t2 randomly give rise to

two red cells or two blue cells, with each color representing a downstream state. For asymmetric division, all cells give rise to one blue cell and one red cell. Green

cells with red outlines are the observed FASEs.

(C) Schematic detailing imputation strategy for missing alleles. Barcoding sites are sorted from those missing in fewest cells (site #1 in this example) to those

missing in most cells (site #5 in this example). Missing alleles (gray) are imputed from site #1 to site #5 (missing in most cells) sequentially. Imputation is illustrated

for site #1 to the right where cells for which site #1 is observed are used to train the model.
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