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Conformation capture technologies (e.g., Hi-C) chart physical
interactions between chromatin regions on a genome-wide scale.
However, the structural variability of the genome between cells
poses a great challenge to interpreting ensemble-averaged Hi-C
data, particularly for long-range and interchromosomal interac-
tions. Here, we present a probabilistic approach for deconvoluting
Hi-C data into a model population of distinct diploid 3D genome
structures, which facilitates the detection of chromatin interactions
likely to co-occur in individual cells. Our approach incorporates the
stochastic nature of chromosome conformations and allows a detailed
analysis of alternative chromatin structure states. For example, we
predict and experimentally confirm the presence of large centromere
clusters with distinct chromosome compositions varying between
individual cells. The stability of these clusters varies greatly with their
chromosome identities. We show that these chromosome-specific
clusters can play a key role in the overall chromosome positioning in
the nucleus and stabilizing specific chromatin interactions. By explic-
itly considering genome structural variability, our population-based
method provides an important tool for revealing novel insights into
the key factors shaping the spatial genome organization.

3D genome organization | Hi-C data analysis | genome structure
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The 3D structural organization of the genome plays a key role
in nuclear functions such as gene expression and DNA rep-

lication (1–3). Thanks to the recent development of genome-wide
chromosome conformation capture methods [Hi-C (4–13), TCC
(14), and single-cell (15) and in situ Hi-C (16)], close chromatin
contacts can now be identified at increasing resolution, providing
new insight into genome organization. These methods measure the
relative frequencies of chromosome interactions averaged over a
large population of cells. However, individual 3D genome struc-
tures can vary dramatically from cell to cell even within an isogenic
sample, especially with respect to long-range interactions (15, 17,
18). This structural variability poses a great challenge to the in-
terpretation of ensemble-averaged Hi-C data (14, 19–23) and pre-
vents the direct detection of cooperative interactions co-occurring
in the same cell. This problem is particularly evident for long-range
(cis) and interchromosomal (trans) interactions, which are generally
observed at relatively low frequencies and are therefore present
only in a small subset of individual cells at any given time (3, 11, 15).
Despite their low frequencies, long-range and interchromosome
interaction patterns are not random noise. In fact, these interac-
tions are more informative than short-range interactions in de-
termining the global genome architectures in cells and are often
functionally relevant—interactions between transcriptionally active
regions are often interchromosomal in nature (14). Owing to their
variable nature, long-range and trans interactions can be part of
alternative, structurally different conformations, which makes their
interpretation in form of consensus structures impossible. However,
inferring which of the long-range interactions co-occur in the same
cell from ensemble Hi-C data remains a major challenge.

These challenges cannot be easily overcome even by the new
single-cell Hi-C technology (15), because it currently detects only
a relatively small fraction of chromatin interactions in a cell.
Also, one might need to profile many thousands of cells before
the data cover a statistically representative spectrum of genome
structures. It is therefore highly beneficial to develop methods
that use ensemble-averaged Hi-C data to infer cooperative long-
range chromatin interactions, which in turn would allow re-
construction of a set of genome structures that accurately captures
a genome’s structural variability.
The majority of structure modeling approaches are based on

the assumption that the contact data arise from a single 3D
consensus structure or family of structures, each satisfying the
complete Hi-C dataset. These methods relate Hi-C contact fre-
quencies to distances, assuming that a lower contact frequency
corresponds to a larger distance between loci in 3D space, which
requires additional (often arbitrary) assumptions (6, 12, 24–30).
The major limitation of these methods is that the generated
consensus structures do not represent single instances of actual
genome structures and cannot capture the variable nature of
long-range and trans chromatin interactions in different struc-
tural states. Further underlining this problem, no single 3D
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model from these approaches can simultaneously satisfy all of
the derived distances or incorporate all of the contacts measured
by the Hi-C experiments.
To address this problem we recently introduced the concept of

population-based genome structure calculation to explicitly model
the genome structure variability between cells using Hi-C data (14,
31). In contrast to consensus structure modeling, a population of
thousands of genome structures is generated in which the cumu-
lated contacts of all of the structures recapitulates the Hi-C matrix,
rather than each structure individually. The approach does not
require a functional relation between the frequencies of contacts
and spatial distances. Other more recent 3D modeling efforts also
use ensembles of structures for considering structural variability in
the models. However, these approaches are currently only appli-
cable to relatively small chromatin fragments with sizes in the
range of topological domains (i.e., ∼1 Mb) or individual chromo-
somes and have not been applied to model entire diploid genomes
(19, 20, 22, 23, 32).
Building on our previous method, here we introduce an im-

proved population-based modeling approach and formulate a
probabilistic framework to model a population of 3D structures of
entire diploid genomes from Hi-C data. The key improvements
in the new approach are an iterative probabilistic optimization
framework, which now allows the inference of cooperative chro-
matin interactions co-occurring in the same cells. We determine
the genome structure population by maximizing the likelihood
function for observing the Hi-C data. Because the problem does
not have a closed-form solution, numerical routines are needed to
approximate the solution. We propose an iterative procedure to
maximize local approximations of the likelihood function, which
produces a population of genome structures whose chromatin
domain contacts are statistically consistent with the Hi-C data.
The result is the best approximation of the underlying true pop-
ulation of genome structures, given the available data.
To determine the true population of genome structures un-

derlying the Hi-C data would require knowing which exact chro-
matin contacts are present in each cell. The Hi-C data cannot
provide this information, but it is possible to approximate the un-
derlying 3D genome structures given additional information. Here,
we show that embedding the genome in 3D space enables such an
approximation by facilitating the inference of likely cooperative
interactions. In 3D space the presence of some chromatin contacts
induces structural changes that may make some additional contacts
in the same structure more probable, whereas other contacts less
likely. Moreover, in a single structure, each chromatin region can
form only a limited number of interactions and is confined to the
nucleus. These constraints and considerations effectively restrict
the conformational freedom of the chromosomes and permit us to
infer likely cooperativity between subsets of the observed chro-
matin interactions, which in turn helps deconvoluting the Hi-C data
into a set of plausible structural states.
Our method distinguishes between interactions involving two

chromosome homologs and therefore is capable of generating
structure populations for entire diploid genomes, which also allows
direct assessment of our findings with image analysis techniques.
Further, because the generated population contains many different
structural states, it can accommodate all of the observed chromatin
interactions, including those that would be mutually exclusive in a
single structure. Our method is sufficiently flexible to integrate ad-
ditional experimental information from various data sources, such
as imaging or lamina DamID experiments, into the log-likelihood
function in the future. Finally, our method is applicable at various
levels of resolution.
As a case study, we tested our new method on human lympho-

blastoid cells, for which imaging data are available for structure
assessment. We generated a population of 3D structures that cor-
rectly predicts many features of the lymphoblastoid genome known
from imaging experiments, including the distributions of inter-
chromosomal distances between gene loci as well as the preferred
nuclear locations of the chromosomes. Most importantly, our
analysis revealed the existence of specific higher-order interchro-

mosomal chromatin clusters. Most prominently, we observe chro-
mosome-specific centromere clusters, which can vary in their
composition between cells. A centromere is typically found in
alternative centromere clusters in different cells and certain cen-
tromere combinations are found substantially more often than
others, demonstrating a chromosome-specific interaction mode.
We find that the propensity for centromere cluster formation af-
fects a chromosome’s overall nuclear positioning, influences its
chromosome conformations, and facilitates stable interchromo-
somal chromatin interaction patterns between certain chromosome
regions. We proof the existence of centromere clusters through
X-ray tomography experiments and confirm the predicted relative
frequencies of specific centromere clusters by 3D FISH experi-
ments. Our observations point to an important functional role of
centromere clusters and raise an important hypothesis, namely that
modulating the preference for specific centromere–centromere in-
teractions can change the fate of a chromosome’s location in the
interphase nucleus as well as stabilize interchromosomal interaction
patterns and therefore can help establish cell-type-specific genome
architectures.

Results
Population-Based Genome Structure Modeling by Maximum Likelihood
Estimation. Chromosomes are segmented into chromatin domains
according to their Hi-C contact patterns. Here, the structure res-
olution is set at the level of chromatin macrodomains (∼3.5 Mb),
defined from the data by a constrained clustering algorithm, for a
total of 1,332 domains for the diploid genome (SI Appendix, section
A.4 and Fig. S1). Our aim is to generate a large population of 3D
genome structures whose macrodomain contacts reproduce the
genome-wide Hi-C data (Fig. 1). In other words, we want to con-
struct a population of genome structures (represented by their
macrodomain coordinates X) in which the formation of con-
tacts between N chromosome domains is statistically consistent
with the normalized contact probability matrix A= ðaIJÞN×N
derived from Hi-C experiments (SI Appendix, section A.3.5).
We formulate this requirement as a maximum likelihood es-
timation problem to generate the structure population model
X (Materials and Methods).
The ensemble Hi-C data are contact frequencies averaged

over a population of cells, so they cannot reveal which contacts
coexist in the same 3D structure. Therefore, we introduce a la-
tent variable, the “contact indicator tensor” W= ðwijmÞ2N×2N×M.
This is a binary, third-order tensor that specifies which domain
contacts belong to each of the M structures in the model pop-
ulation and also distinguishes contacts from homologous chro-
mosome copies (i.e., each domain has two copies and so there
are 2N homologous domain copies). We can jointly approximate
the structure population X and the contact indicator tensor W by
maximizing the log-likelihood logLðXjA,WÞ= logPðA,WjXÞ.
Obviously, the ensemble-based Hi-C data are not sufficient to

derive the true contact tensor W and the structure population X.
However, given additional information it is possible to approxi-
mate the best solution of W and X for a given Hi-C dataset.
Representing the genome domains in 3D space already sub-
stantially constrains the conformational freedom of chromosomes
and restricts possible Hi-C contact assignments. For instance, the
presence of certain chromatin contacts in a structure influences
the probability of observing other contacts in the same structure.
In addition, volume exclusion introduces the requirement that no
two domains can overlap whereas all domains must be confined
inside the nuclear volume. Taken together, such constraints can
facilitate a structure-based deconvolution of the Hi-C data and an
approximation of X that closely reproduces many known struc-
tural features of the genome, which were not included as input
information.
To solve this problem, we design an iterative procedure to

maximize the log-likelihood function. Each iteration consists of
two steps (Fig. 1A):
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� Assignment step (A-step): Given the current estimated model
X(k), estimate the latent variable W(k+1) by maximizing the log-
likelihood over all possible values of W.

Wðk+1Þ = argmax
W

flogPðA,WjXÞg, given  X=XðkÞ

� Modeling step (M-step): Given the current estimated latent
variable W(k+1), find the model X(k+1) that maximizes the
log-likelihood function.

Xðk+1Þ = argmax
X

flogPðA,WjXÞg,     given W=Wðk+1Þ

In our new approach we use a stepwise optimization strategy to
gradually increase the optimization hardness (Fig. 1B), which facili-
tates the detection of cooperative interactions in genome structures.
The idea is to begin by estimating a structure population X̂θ that at
first reproduces only the most frequent interactions according to the
contact probability matrix A (e.g., above a threshold θ; aIJ ≥ θ), so
that interactions with contact probabilities lower than a certain value
θ are ignored (for example, we can start with θ = 1). Then, using this
structure population as the initial condition, we add contacts with
lower probabilities (e.g., θ = 0.8, that are contacts present in 80% of
all structures) and perform another round of optimization. In other
words, the contacts in A are added gradually to the structure pop-
ulation X and tensorW, and the iterative optimization (A/M-steps)
is applied after each allocation to achieve the convergence of
ðX̂θ, ŴθÞ. Because errors in the conformation capture detection
are expected to have low frequencies, we stop at the threshold θ =
0.01 to reduce the effect of experimental noise in the calculations.
In the A-step, we use an efficient heuristic strategy to estimate

W by using information from the structure population generated
in the previous M-step. We assume that assignments of a given

chromatin contact across the contact indicator tensor W are
more likely realized in those genome structures in which the
corresponding chromatin domains are already closer in 3D
space. In particular, for each potential contact between domains
I and J, we determine a cutoff activation distance dactIJ based on
the distribution of all distances for this pair in all structures of
the model population (SI Appendix, Fig. S1C). The cutoff dis-
tance is defined such that the probability PðdIJ ≤ dactIJ Þ equals to
aIJ and is used to estimate the contact indicators.
In the M-step, maximizing logPðA,WjXÞ can be reduced to

maximize only logPðWjXÞ, because A and W are known and
PðA,WjXÞ=PðAjWÞPðWjXÞ. We use simulated annealing dy-
namics and conjugate gradient optimizations to generate a pop-
ulation of 3D genome structures X for which all of the chromatin
contacts in W are physically realized in the genome structures,
indicating that the likelihoods of all contacts in the structure
population are maximized to approximately one. We imple-
mented the structure optimization tools within the Integrated
Modeling Platform (33, 34). We applied our method to human
lymphoblastoid cells, using TCC experiments with a fivefold in-
crease in sequencing coverage in comparison with our work
reported in ref. 14. We also applied our method to more recent
high-resolution in situ Hi-C data from the Lieberman Aiden lab-
oratory (16), which confirmed our conclusions (see SI Appendix,
section A.9).

Assessment of Our Structure Population with a Diverse Collection of
Experimental Data. The contact probability map from our structures
(i.e., the probability of finding a specific contact in the structure
population) agrees very well with those derived from the TCC data
(Fig. 2A and SI Appendix, Fig. S2A; row-based Pearson’s r = 0.956).
Interchromosomal contact probabilities show a relatively high
correlation (Pearson’s r = 0.75), which is comparable to the cor-
relation between normalized interchromosomal contacts from
replicate Hi-C experiments (35, 36). Chromosome structures can

Fig. 1. Schematic of the population-based genome
structure modeling approach. (A) A population of M
genome structures is constructed, in which the for-
mation of contacts between chromosome domains
over all structures is statistically consistent with the
contact probability matrix A, derived from Hi-C ex-
periments (Materials and Methods). We formulate this
problem as a maximum likelihood estimation problem.
Because the Hi-C data A are incomplete, we introduce
the “contact indicator tensor” W, a binary third-order
tensor that can complete the missing contact in-
formation in A. That is, W specifies which domain
contacts exist in which structures of the population
and also distinguishes between contacts from homol-
ogous chromosome copies. Also shown is the “pro-
jected contact indicator tensor,”W, derived fromW by
projecting its diploid genome representation to its
haploid representation (SI Appendix). (B) The maxi-
mum likelihood optimization is achieved through a
stepwise iterative process, where we gradually increase
the optimization hardness by gradually adding con-
tacts of the matrix Aθ = ðaθIJÞN×N with decreasing con-
tact probability threshold θ. This process generates a
structure population that is consistent with the Hi-C
data (SI Appendix).
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fold differently in the population, which allows for the stochastic
nature of chromosome conformations (Fig. 2B), whereas the cu-
mulative chromatin interactions across the population reproduce
the observed Hi-C interaction matrix (Fig. 2A). All our results are
highly reproducible in independent replicate simulations, with al-
most identical contact probability maps and almost identical aver-
age radial positions of all of the domains (all Pearson’s r > 0.99,
P values negligible; see SI Appendix, section A.6 for details on
population size convergence and reproducibility).
In the structure population, the distribution of each chromo-

some’s radial distance to the nuclear center shows a distinct maxi-
mum, revealing a preferred radial position for the chromosome
territory. These positions agree very well with those measured in
FISH experiments (37) (Pearson’s r = 0.75, P = 4.2e-5) (Fig. 3A,
Top Left). As expected, small, transcriptionally active, gene-rich
chromosomes are generally located more centrally in our structures,
whereas gene-poor chromosomes are located closer to the nuclear
envelope (NE), confirming also previous studies (14, 37). When we
generate a structure population without interchromosomal contact
data, the chromosome positions do not agree with FISH experi-
ments (Pearson’s r = −0.3; Fig. 3A, Top Right), demonstrating the
importance of interchromosomal contacts in constraining the global
chromosome organization in our structures.
Next, we compared the frequencies with which several gene loci

(from different chromosomes) are spatially colocalized in the
model population with those from 3D FISH experiments mea-
sured over a population of cells. Specifically, we measured four
interchromosomal 3D distances between a locus on chromosome
19 and 4 other gene loci on chromosome 11. These loci pairs have
no known functional connection (14). Two pairs of loci were in
close spatial proximity substantially more frequently than the other
two, which is in good agreement with the FISH experiments (14).
Our structure population captured correctly the rank order of the
colocalization frequency among the four pairs (Fig. 3B), even

though interchromosomal interactions are generally present at low
frequencies. Next, we measured 3D distances between the IGH
gene locus (on chromosome 14) and 4 other gene loci on four
different chromosomes (i.e., 3, 11, 18, and 22). We also measured
distances between the MYC gene locus (on chromosome 8) and
four other gene loci on four different chromosomes (i.e., 2, 3, 14,
and 22) (Fig. 3C). The spatial proximity of these eight loci pairs
has been previously studied by 3D FISH experiments because of
their relevance in chromosome translocation events occurring in
Burkitt’s and B-cell lymphomas (38). The FISH experiments were
performed on at least 500 cells, revealing a distinct distribution of
distances for each locus pair (38). The cumulative frequency of 3D
distances in our structure population agrees very well with those
from the FISH experiments (ref. 38 and SI Appendix, Fig. S2C). In
agreement with experiment our structure population predicts the
correct loci pairs (MYC:IGH and IGH:CCND1) to be consistently
in closer proximity at a higher frequency in the population. Also
for the other loci pairs our structure population predicts well the
relative frequency of loci distances (that is, the fraction of cells
having two loci within a certain distances). For example the rel-
ative order of the cumulative distances are correctly predicted
between all of the loci and the MYC locus (Fig. 3C). The correct
prediction of interchromosomal distances is challenging and re-
lies on an accurate description of the entire genome organization.
The level of agreement between predicted and measured in-
terchromosomal gene distances is a good indication of the pre-
dictive value of our models. Next, we focus our analysis on the role
of centromeres in shaping the spatial genome organization.

Nuclear Locations of Centromeres. When calculating the average
radial position of each domain in a single chromosome, an inter-
esting pattern emerges: For most chromosomes, the centromeres
often have the innermost average position among its chromosome
domains (Fig. 4A and SI Appendix, Fig. S3), even though no radial

Fig. 2. Structure population. (A) Comparison of the
normalized contact probability maps from the TCC
experiment (Left) and structure populations (Right) of
chromosome 1. On the right side of the heat map
are spheres representing the corresponding chromatin
domains for chromosome 1. (B) An example of the
conformational variability between chromosome struc-
tures in the population. These are randomly selected
structures of chromosome 1 from themodel population
(Bottom) and their respective domain contact maps
(Top). The translucent surface of each structure rep-
resents the volume of the chromosome models, and
the connection between sphere centers represents
their sequence order in the chromosome (color codes
according to their sequence position on chromo-
some, as in A).
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constraints were imposed on these regions. The extent of this “V-
shaped” pattern varies among chromosomes. It is pronounced in
some chromosomes (e.g., chromosomes 1 and 2) and weak in others

(e.g., chromosomes 6 and 16). For a few chromosomes, the V shape is
pronounced in only one of the two homologs (e.g., chromosome X).
A few subtelomeric regions show similar but weaker behavior, in
that they have smaller radial positions than other regions in the
same chromosome arm. Interestingly, chromosome 2 shows a
distinct double-V pattern with a second local minimum, pre-
dicting a centromere-like behavior at position 2q21.3–2q22.1
(∼40–50 Mb downstream from the centromere on the q-arm). We
noticed that human chromosome 2 evolved from primates by a
head-to-head fusion event of two chromosomes (39). The second
minimum observed in our structure population is located at ex-
actly the position where a vestigial second centromere would be
expected from the evolution event.
Overall, the radial distribution of centromeres is generally

increased toward the interior regions (Fig. 4B), consistent with
observations in FISH experiments (40). However, we can show
that the radial distributions vary largely, with some centromeres
(e.g., chromosome 1) showing distinctly increased location
probabilities at central regions, whereas those of some other
chromosomes (e.g., chromosome 6) seem almost uniformly dis-
tributed throughout the nucleus (Fig. 4B).

Centromeres Form Higher-Order Clusters. Centromeres interact with
each other, as is evident from the Hi-C data analysis. However, no
study addressed the question of whether centromeres form higher-
order clusters in this cell type (i.e., the colocalization of three or
more centromeres), and which centromeres participate in such
clusters and what role clusters play in organizing the interphase
genome structure in human cells. We are now in a position to
study the higher-order clustering of centromeres in individual
cells. We observe that about half of the centromeres in a structure
are part of a higher-order cluster (with more than three colocal-
izing centromeres) (SI Appendix, section A.5.1). The majority of
structures (∼80%) contain between two and four such clusters (SI
Appendix, Fig. S4A). The cluster size varies widely, with a median
of five centromeres (SI Appendix, Fig. S4B). Naturally, smaller
clusters are observed more frequently than larger ones and only
rarely does a cluster contain more than 20 centromeres; such large
clusters are observed in less than 4% of the population. Several
clusters are shown in Fig. 4C, illustrating the stochastic nature of
centromere clustering in the structure population.

Cryo-X-Ray Tomography Confirms the Presence of Centromere Clusters.
Although higher-order centromere clusters have been observed in
some other cell types and species (6, 8, 9, 35, 36, 40–44), in
GM12878 cells they have not been characterized yet to our
knowledge. To confirm the presence, size, and locations of higher-
order clusters experimentally we performed cryo soft X-ray
tomography experiments (cryo-SXT) on lymphoblastoid cells
(GM12878). Cryo-SXT is a quantitative imaging technique that
produces 3D tomographic reconstructions of entire cells in a near-
native state. We previously demonstrated the potential of cryo-
SXT to detect pericentromeric heterochromatin foci in the nuclei
(45). Pericentromeric heterochromatin has higher linear absorp-
tion coefficients (LAC) (between 0.34–0.36 μm−1) than the rest of
the heterochromatin, which allows their distinction from other
heterochromatic regions and euchromatin (46). Our experiments
on lymphoblastoid cells revealed clusters of pericentromeric het-
erochromatin in the interior regions of the nucleus, consistent with
our findings (Fig. 4D). Among the 10 imaged intact cells, the
majorities (70%) have three and the remaining cells two interior
large clusters, in close agreement with our predictions. The mea-
sured volume of these regions indicates that centromeres of ap-
proximately three to five chromosomes could participate in the
formation of these foci. Also, the number and size of these cen-
tromere foci vary between individual cells, similar to our findings.
These findings are therefore qualitatively in good agreement with
our structure models and confirm the predicted centromeric
clusters, which can also localize to central regions of the nucleus.

Fig. 3. Model assessment. (A) (Top Left) Comparison of the average radial
chromosome positions from FISH experiments (37) and the structure population.
The dashed line shows a linear fit. (Top Right) The average radial chromosome
positions in a structure population generated by including only intrachromosomal
TCC contacts (but no interchromosomal contacts). (Bottom Left) Comparison of
the average radial chromosome positions between structure populations gener-
ated with the complete and a reduced TCC datasets (which contain all intra-
chromosomal TCC contacts and only those interchromosomal contacts formed by
subcentromeric regions). (Bottom Right) Comparison of the averaged radial
chromosome positions between structure populations generated with the com-
plete TCC dataset and one structure population generated with a TCC dataset
without any interchromosomal interactions. (B) Comparison of the colocation
propensity for four interchromosomal loci pairs [formed by four loci on chro-
mosome 11 (H1, H2, L1, and L2) and one on chromosome 19 (H0)] between FISH
experiments (14) and the structure population. The colocalization cutoff distance
was chosen to be 1 μm. (C) The cumulative distance distributions of eight trans-
location-prone interchromosomal gene pairs calculated from the structure pop-
ulation for comparison with 3D FISH experiments by Roix et al. (38). The order of
gene-pair colocation propensity agrees well with FISH experiments taken from
Roix et al. (38) (plots of the experimental data are shown for visual comparison in
SI Appendix, Fig. S2C).
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Centromere Clusters Are Specific with Respect to Chromosome
Compositions. We asked whether the 23 chromosomes have dif-
ferent probabilities to participate in centromere clusters. To detect
the frequency of clusters with distinct chromosome identities in the
population, we translated each genome structure into a centro-
mere interaction graph and applied a frequent dense-subgraph
mining algorithm (47). The algorithm revealed 798 specific
centromere cluster combinations (i.e., frequent cluster patterns;
Materials and Methods) observed in at least 1% of the population

(SI Appendix, Fig. S4E). Many possible centromere cluster com-
binations are never observed. Only about 18% of all possible three-
chromosome combinations exist as centromere clusters. Other
clusters are found with relatively high frequencies. For example,
the centromere cluster of chromosomes 7, 10, and 12 occurs more
frequently than the cluster of chromosomes 2, 3, and 6, but less
frequently than the cluster formed by chromosomes 1, 9, and 21
(Fig. 5A). To test the chromosome-specific nature of our predicted
centromere clusters, we performed 3D FISH experiments for these
three centromere clusters (Fig. 5B) (SI Appendix, section A.10). To
compare the colocalization propensity of centromeres in the three
clusters we first calculated the cumulative percentage of cells with
respect to the probe triplet distances (Fig. 5B). As predicted by our
models, the FISH experiments confirm that centromeres 1, 9, and
21 are consistently more frequently at smaller distances to each
other than those of centromeres 7, 10, and 12, while centromeres 2,
3, and 6 are least frequently in proximity to each other among the
three clusters (Fig. 5B). We then quantified the relative frequen-
cies of centromere colocalization for the three clusters in the cell
population. Our model predicts very well the relative cluster fre-
quencies seen in FISH experiments (Fig. 5C). In FISH experi-
ments, the centromere cluster 1–9–21 shows the highest frequency
among all three clusters. The observed frequency for cluster 7–10–12
is only 67% of the frequency for cluster 1–9–21, whereas the
frequency of cluster 2–3–6 is only 23% of the frequency for
cluster 1–9–21. In the model, the rank order of frequencies is
identical. The highest frequency is observed for cluster 1–9–21.
The frequency of cluster 7–10–12 is only 86% and the frequency
of cluster 2–3–6 is only 4% of the frequency observed for cluster
1–9–21, respectively (Fig. 5C). Additionally, we tested whether the
centromeres are the main points of interactions for the chromo-
some cluster 1–9–21. We found that the three markers located in
the pericentromeric regions of chromosomes 1, 9, and 21 showed
substantially higher colocalization frequency (approximately three-
fold at distance threshold 1.5 μm; Fig. 5D and SI Appendix, Fig. S9)
than a control group of markers located at more distal regions from
centromeres on the same chromosomes (56.8, 61.5, and 18.3 Mb
away from centromere on chromosomes 1, 9, and 21, respectively;
SI Appendix, section A.10). The cumulative probe triplet distances
are consistently smaller for the subcentromeric probe cluster than
for the control probes at more distant locations from the centro-
meres. The FISH experiments confirm that centromeres are the
likely points of interactions for chromosome cluster 1–9–21.
In our model, individual chromosomes differ substantially in

their propensity to form centromere clusters. Among the frequent
centromeres to cluster in our structure population are those from
chromosomes 1, 9, 10, 14, 20, 21, and 22 (Fig. 5E). We conclude
that centromere cluster formation is highly specific in nature.
We then asked whether the stability of specific centromere

clusters is mirrored by the presence of the same epigenetic markers
in the subcentromeric regions of these chromosomes (i.e., regions
within 5 Mb of the centromere borders). The gene density, gene
expression levels, and constitutive heterochromatin marker
(H3K9me3) are similar for all clusters of both high and low fre-
quencies (SI Appendix, Fig. S4F). However, the signal intensities of
other histone modifications are clearly correlated with cluster fre-
quency: Positive correlations are found for markers associated with
open chromatin structure and chromatin activation, such as DNase
hypersensitivity regions, and CTCF binding, and histone modifica-
tions H3K4me1, H3K4me3, H3K9ac, and H3K27ac (Fig. 5F and SI
Appendix, Fig. S4F). Negative correlation is found for DNA meth-
ylation signals, which is depleted in clusters with higher frequency.
We also noticed other factors that contribute to the cluster

stabilization. Human acrocentric chromosomes (i.e., 13–15, 20,
and 21) bear nucleolus organizer regions (NORs) on their short
chromosome arms close to the centromeres (48). We noticed
that about two-thirds of our detected centromere clusters contain
at least one (and about half at least two) NOR-bearing chromo-
somes. Therefore, a large portion of the centromere clusters in the
structure population is likely to be connected to nucleoli (SI
Appendix, Fig. S4 C and D). Indeed, our cryo-SXT experiments

Fig. 4. Chromosome arrangements and centromere clusters. (A) The median
radial position of each domain in a chromosome, calculated separately for the
radially innermost (blue curve) and outermost chromosome copy (orange
curve) in a cell. Centromeres at position 0 are marked with a green dashed
line. Regions near the centromeres are often closest to the nuclear interior,
making a characteristic V shape. Chromosome 2 shows a double-V pattern
with a second local minimum at the position of a possible vestigial second
centromere. Chromosome 2 evolved from primates by a fusion event of two
chromosomes (see SI Appendix, Fig. S3 for plots of all chromosomes.) (B) (Top)
Histogram of radial positions for all centromeres. (Bottom) Comparison of the
centromere radial distributions for chromosomes 1 and 6, as well as randomly
placed points in a nucleus. (C) Illustration of different centromere clusters
observed in the structure population with one genome structure containing
three (Top) and the other five clusters (Bottom). (Left) Centromere spheres are
colored based on their cluster membership; unclustered centromeres are
white. (Right) Chromosomes of the clustered centromeres are shown by their
excluded volume. A dashed circle and yellow surfaces indicates the location of
the centromeres. (D) Soft X-ray tomography images of a lymphoblastoid cell.
(Left) One orthoslice (virtual section) from the soft X-ray tomographic re-
construction of an intact and unstained lymphoblastoid cell shows two clus-
ters of centromeric heterochromatin (arrows). (Right) Three-dimensional
rendered view of the same cell that has been segmented and color-coded to
show mitochondria (copper) and the Golgi apparatus (lilac) in the cytoplasm
surrounding the nucleus. The cross-section is composed of three orthogonal
slices and reveals both heterochromatin (shades of light to dark blue reflect
increasing degrees of compaction) and euchromatin (green). The highest-
absorbing centromeric heterochromatin (golden) is seen toward the central
regions of the nucleus.
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confirm this prediction (Fig. 4D). Due to their distinct linear-
absorption coefficients cryo-SXT can visualize the locations of
nucleoli. About two-thirds of all interior centromere clusters
(∼70%) are associated with nucleoli (Fig. 4D).

Centromere Clustering As a Driving Force for Chromosome Positioning.
Next we analyze the spatial localizations of higher-order centro-
mere clusters. First of all, we note that if a centromere is part of a
larger centromere cluster, it is more likely to be positioned toward
the nuclear interior. Indeed, a centromere’s radial position is
strongly correlated with the number of other centromeres that it
interacts with (Fig. 6A). In other words, when comparing the ra-
dial centromere position of the same chromosome in different
structures, we observe a smaller radial position for this chromo-
some when it participates in a larger centromere cluster. This
trend is similar for all of the chromosomes (SI Appendix, Fig. S5).
However, the likelihood of forming a large cluster varies among
chromosomes, which explains the differences in their average
centromere positions (Fig. 4B).
So, why do centromeres in larger clusters prefer interior loca-

tions in the nucleus if they are not explicitly tethered to the nuclear
envelope? Inspection of the model structures reveals that clustered
centromeres tend to be located in the central regions of the cor-
responding chromosome cluster (Fig. 4C). The centromeres are
naturally shielded from approaching the outer nuclear regions by
the chromosome arms that radiate outward from the cluster center
(Fig. 6B). Therefore, the nuclear volume accessible to the cen-
tromeres decreases with increasing cluster size and with the size of
the corresponding chromosomes. In other words, due to their re-
stricted accessible volume, clustered centromeres are more often
found close to the nuclear interior than nonclustered centromeres,
which can access a larger nuclear volume.
Our observations therefore indicate that centromere cluster-

ing can be a driving force for positioning some chromosomes
toward the nuclear interior. To test this hypothesis, we calculated
another structure population using a modified TCC dataset
containing all intrachromosomal interactions and only those in-
terchromosomal interactions formed by subcentromeric regions.
This criterion excludes nearly 70% of the original TCC data (SI
Appendix, Fig. S2A). Strikingly, the genome structures produced
in this model accurately reproduce all radial chromosome posi-
tions (Pearson’s correlation r = 0.96) (Fig. 3A, Bottom Left).
Moreover, this model correctly predicts the contact probabilities
of significant interchromosomal interactions (Pearson’s r = 0.67,
P = 3.2e-14) for regions within ∼17 Mb from the centromeres,
which were excluded from the TCC data when generating this
model. Also, the resulting genome-wide contact probability map
generally resembles those of the complete data model (SI Appendix,
Fig. S2A; Pearson’s r = 0.954). Removing also the subcentromeric
interactions from the TCC data produces genome structures with
incorrect radial positioning of the chromosomes (Fig. 3A, Bottom
Right). We also tested a model with nonspecific centromere–
centromere interactions. In this model, we include all intra-
chromosomal interactions and include only interchromosomal
interactions formed between subcentromeric regions with uni-
form contact probability for each subcentromeric pair (SI Ap-
pendix, section A.8). The contact probability is chosen so that the
total number of subcentromeric contacts is identical to the
original model. The structure population generated with this
model did not reproduce the correct radial positioning (SI Ap-
pendix, Fig. S2B), supporting the notion that specific centromere
interactions could play an important role in chromosome posi-
tioning inside the nucleus.
Centromere clustering often induces a more V-shaped chro-

mosome conformation (with centromere at the hinge positions)
(Fig. 6B). With increasing cluster sizes, the angle between the
clustered chromosome arms tends to decrease (favoring more
V-shaped chromosome conformations) (SI Appendix, Fig. S5B),
whereas the chromosome arms tend to be more extended (SI
Appendix, Fig. S5C). These effects are likely a result of crowding at
the cluster centers. Our structures can effectively explain several

other findings in the Hi-C data. Subcentromeric regions show
relatively high interchromosomal contact probability (ICP, defined
as the fraction of interchromosomal contacts among all its con-
tacts) (14) (SI Appendix, Fig. S6). These interchromosomal con-
tacts are formed largely with other subcentromeric regions (14, 36).
Indeed, as seen in the structural models (Fig. 4C), crowding in the

Fig. 5. Centromere clusters are chromosome-specific. (A) A selection of
centromere clusters detected in the structure population at different fre-
quencies and shown as circos plots (labels are chromosome names). The
abundance ratio (a.r.) is the relative cluster frequency in the population with
respect to frequency of cluster 2–3–6. (B) Three-dimensional FISH assessment
of centromere clusters. (Upper) Schematic view of the genomic locations of all
FISH probes. (Lower Left) Images of the three-color FISH experiments with
probes in green, red, and yellow. Chromosomal DNA was counterstained in
blue with DAPI. (Lower Middle) Cumulative percentage of cells with respect to
the smallest probe triplet distances in a cell for each cluster. The “triplet dis-
tance” is defined as the smallest averaged sum of all three distances between
three different probes: (d1 + d2 + d3)/3. (Lower Right) (C) The relative fre-
quencies of the three clusters in FISH experiments (Left) and structure pop-
ulation (Right). A cluster is defined if all of the three distances between all
three probes are less than 1.5 μm in a single cell. (D) Histogram of colocali-
zation frequencies with varying distance threshold for probes located adja-
cent to centromeric regions of chromosomes 1, 9, and 21 (orange probes in
B, Upper) and a control group of markers located at more distal regions from
the centromere (gray probes in B, Upper) (see also SI Appendix, Fig. S9).
(E) Histogram of the propensity of centromeres to be found in centromere
clusters (i.e., the relative abundance of a chromosome in all centromere
clusters with frequencies ≥1%). (F) Comparison of the epigenetic signatures in
the subcentromeric regions (+5 and −5 Mb from centromere) of frequent and
infrequent centromere clusters (Materials and Methods and SI Appendix,
Table S4). The enrichments of some epigenetic signatures are correlated with
the centromere cluster abundance ratio. Statistical significance is indicated by
*P values < 0.005 and **P values <1.e-6 (one-sided Wilcoxon tests). (See SI
Appendix, Fig. S4F for more chromatin factors.)
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cluster centers effectively shields subcentromeric regions from
interactions with their own chromosome arms, while at the same
time restricting interchromosomal interactions largely to sub-
centromeres of other chromosomes explaining the unusual ICP
values for these chromatin regions (14, 36).

Discussion
We introduced a probabilistic framework for deconvoluting en-
semble Hi-C data into a population of genome structures whose
chromatin contact probabilities are statistically consistent with
the Hi-C data. Our models have predictive value. They repro-
duce remarkably well many known structural properties of the
human lymphoblastoid cell genome, even though these were not
included as input constraints and are not readily observable in
the TCC data. By considering the stochastic nature of chromo-
some conformations, our models allow a detailed structural
analysis of genomes. Here, we focused on the structural role of
centromeres and make several interesting findings. We observed
the presence of large higher-order centromere clusters in our
models and confirmed their presence by Cryo-SXT experiments.
However, not all of the chromosomes participate equally likely in
centromere clusters and specific combinations of chromosomes
are found more often in clusters than others. It remains to be
seen what factors are responsible for the chromosome-specific
nature of centromere clustering. We showed that histone mod-
ifications that are typically associated with more open chromatin
in the subcentromeric regions of a chromosome correlate pos-
itively with the frequency of this centromere to form stable
clusters. Also, the formation of nucleoli may be initiated by
centromere clusters. Interestingly, we observe a correlation be-
tween the centromere cluster size and its radial position. In other
words, if a centromere is in a larger cluster it is more likely to be
positioned in the nuclear interior than if the same centromere is part
of a smaller cluster. These observations indicate that centromere
clustering can shape the interphase genome architecture by imposing
strong geometrical constraints on chromosome positioning. Notably,
in other organisms, such as yeasts (6, 44, 49–52) and Drosophila
melanogaster (8, 9), centromere clustering plays a prominent role in
shaping the interphase genome structures. A model based on inter-
chromosomal interactions formed by only subcentromeric regions
suffices to reproduce the correct radial positions of all chromo-
somes. These results raise an interesting hypothesis, namely, that
modulating the preferences for centromere–centromere interac-
tions could change the fate of a chromosome’s location, thereby
helping establish cell-type-specific genome architectures. Notably, it
has been suggested that centromere clustering is a particular feature
in undifferentiated cells. Modulating the probability of a chromo-
some to form centromere clusters during differentiation may con-
tribute to establishing the location preferences of chromosomes in
different cell types.
Here, we studied the genome structures at ∼3.5-Mb resolution

and focused our analysis on centromere interactions. Our method
allows a detailed analysis of the dynamic landscape of genome or-

ganization, which is currently not explored by other structure-based
methods. In future, our method could be applied at higher resolution
[for instance at the levels of “contact domains” (16)], which will chart
a more detailed description of the genome structure landscape.
Moreover, currently we only included Hi-C data in our analysis.
However, to increase accuracy, precision, and coverage in our models
it is necessary to integrate all available data sources in future. Our
current method provides the first step in this direction by providing a
flexible framework for data-driven genome structure modeling.

Materials and Methods
Population-Based Structure Modeling Approach. The population-based struc-
turalmodeling approach is a probabilistic framework to generate a large number
of genome 3D structures (i.e., the structure population) whose chromatin domain
contacts are statistically consistent with the input experimental TCC data. Our
structure population represents a deconvolution of the ensemble-averaged TCC
data into a population of individual structures and represents the most likely
approximationof the true structurepopulationgivenall of theavailabledata.Our
methoddistinguishes between interactions involving two chromosomehomologs
and therefore can generate structure populations of entire diploid genomes.
Further, because the generated population can contain different structural states,
it can accommodate all of the experimentally observed chromatin interactions,
including those that would be mutually exclusive in a single structure.

Chromatin is represented at the level of chromosome domains, whichwere
inferred from the TCC data as described previously (14). We represent the
genome at the level of macrodomains at about 3.5-Mb resolution (SI Ap-
pendix, section A.4).

We formulated the genome structure optimization problem as a maxi-
mization of the likelihood PðA,WjXÞ, where A is the domain contact prob-
ability matrix derived from the observed TCC data (SI Appendix, section A.3),
X is the model representing the population of genome structures, and W is
the latent indicator variable of all diploid chromatin domain contacts across
the population. To solve this large-scale model estimation problem, we
designed an iterative optimization algorithm with a series of optimization
strategies for efficient and scalable model estimation. In addition, here we
introduce a stepwise strategy that is developed to efficiently guide the ge-
nome structure search process by gradually incorporating all chromatin
contacts starting from high to low contact probabilities. The idea is to begin
by estimating a structure population that at first reproduces the most fre-
quent interactions, then, by using the resulting structure population as the
initial condition, we gradually increase the number of constrained contacts
with decreasing contact probabilities, followed at each iterative step by
additional rounds of structure optimizations.

Probabilistic Model and Problem Formulation of the Structure Population. Our
model, the structure population, is defined as a set of M diploid genome
structures X = {X1, X2, . . ., XM}, where the m-th structure Xm is a set of 3D
vectors representing the center coordinates of 2N domain spheres
Xm = f~xim :~xim ∈ℜ3, i= 1,   2  ...,   2Ng. N is the number of domains (SI Appendix,
section A.4), and each domain has two homologous copies. The contact proba-
bility matrixA= ðaIJÞN×N forN domains is derived from the TCC data (SI Appendix,
section A.3) and is the probability that a direct contact between domains I
and J exists in a structure of the population (note that capital letter indices I and
J relate to domains without distinguishing between two homologous copies,
whereas lowercase letter indices i, i′ and j, j′ distinguish between two copies).
Given A= ðaIJÞN×N we aim to estimate the structure population X such
that the likelihood PðA,WjXÞ is maximized. W= ðwijmÞ2N×2N×M is the contact
indicator tensor, which is the latent variable complementing the missing in-
formation in the TCC data (A) and includes the contacts of all homologous
domains in each structure of the population (i.e., wijm = 1 indicates the contact
between domain spheres i and j in structure m; wijm = 0 otherwise) (Fig. 1A).
The dependence relationship between these variables is given as X→W→A,
because W is a detailed expansion of A at the diploid representation and
single-cell level and X is the structure population that is consistent to
W. Therefore, the likelihood PðA,WjXÞ can be expanded to PðAjWÞPðWjXÞ
according to this relationship. In detail, PðWjXÞ can be expanded to

PðWjXÞ=∏M
m=1∏

2N
i, j=1
i≠j

Pðwijmj~xim,~xjmÞ, where we have

P
�
wijmj~xim,~xjm

�
= P

�
wijm = 1j~xim,~xjm

�wijm P
�
wijm = 0j~xim,~xjm

�1−wijm . [1]

We modeled a contact between two domain spheres i and j as a variant of
the rectified or truncated normal distribution (see SI Appendix, section
A.1.2). PðAjWÞ can be expanded as PðAjWÞ=∏I,JPðaIJ ja′IJÞ, where a′IJ is the

Fig. 6. Centromere clusters are often in the nuclear interior. (A) Box-and-
whisker plots showing the distribution of radial positions of a centromere as a
function of the number of other centromeres it is in contact with. The widths of
the boxes are proportional to the square root of the sample size. Displayed
here are plots for chromosomes 1 and 6 and centromeres from all chromo-
somes combined (see SI Appendix, Fig. S5A). (B) Schematic diagram of a cen-
tromere cluster, illustrating that centromeres in a central cluster are often
shielded by their chromosome arms from approaching positions close to the NE.
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contact probability of the domain pair I and J computed from W. We then
model each aIJ as aIJ = a′IJ + «IJ, where «IJ are independent and identical
normally distributed random variables with mean zero («IJ ∼ 0) (SI Appendix,
section A.1.3).

With these probabilistic models, we can maximize the log-likelihood
logPðA,WjXÞ, expressed as below:

log PðA,WjXÞ= log PðAjWÞ+ log PðWjXÞ

=
XN
I, J=1
I≠J

log PðaIJ ja′IJÞ+
XM
m=1

X2N
i, j=1
i≠ j

logP
�
wijmj~xim,~xjm

�
. [2]

In addition to the TCC data, we also consider additional information about
the genome organization. These data are included in form of spatial con-
straints acting on the 2N domain spheres: (i) a nuclear volume constraint that
forces all spheres to lie inside the nuclear volume (

��~xim
��
2 <Rnuc, where Rnuc is

the nuclear radius); (ii) excluded volume constraints that prevent the overlap
between any two spheres i and j, that is,

��~xim−~xjm
��
2 ≥ ðRx

i +Rx
j Þ where Rx

i is
the excluded volume radius of sphere i (SI Appendix, section A.1.1); and
(iii) information from 3D FISH experiment, which showed that the telomere
on q-arm of chromosome 4 is in proximity to the NE (53). Accordingly we add
a constraint to the q-arm telomere domain (~x4qtel) of chromosome 4 to be
located close to the NE (

��~x4qtel
��
2 > 0.75Rnuc). Note that, without losing

generalization, we use the origin (0,0,0) as the nuclear center, thus
��~x��2 is

equivalent to the distance from the nuclear center. In summary, the maxi-
mum likelihood problem is formally expressed as follows:

X̂ = argmax
X

max
W

flog PðA,WjXÞg

subject  to 

8<
:

spatial  constraint  I:  nuclear  volume  constraints
spatial  constraint  II:  excluded  volume  constraints
spatial  constraint  III:  4qtel�NE  proximity  restraints.

[3]

Note that, in principal we could add more knowledge-based constraints into
this formulation.

Optimization Procedure. We designed an iterative optimization procedure to
solve this maximum likelihood estimation problem. Because our problem does
not have a closed-form solution, numerical routines and heuristic strategies
are needed to efficiently approximate the solution. This is an efficient iter-
ative solver to alternately optimize W and X while holding the other fixed.
We refer to this iterative cycle as the A/M (Assignment/Modeling) steps (Fig.
1A) and this procedure as the A/M algorithm, which are described as follows:

� Initialization step: an initial model estimate X(0) is needed to start the
iterative procedure at the very first optimization step. We first initialize
random points for domain positions (spherically uniformly distributed inside
the nuclear volume) and then optimize them to satisfy the three spatial
constraints in Eq. 3 to get X(0) (Fig. 1B).

� Assignment step (A-step): Given the current estimated model X(k), esti-
mate the latent variable W by maximizing the log-likelihood over all pos-
sible values of W:

Wðk+1Þ = argmax
W

flog PðA,WjXÞg, given  X=XðkÞ. [4]

� Modeling step (M-step): Given the current estimated latent variable W(k+1),
find the model X(k+1) that maximizes the log-likelihood of the data A. A
new structure population will be generated in which all assigned contacts in
W will be physically present in the structure population X:

Xðk+1Þ = argmax
X

flog PðA,WjXÞg,     given W=Wðk+1Þ. [5]

� Iterative A/M steps until convergence (detailed convergence criteria refers
to SI Appendix, section A.1.7).

We extensively exploited the parallelism and algorithmic heuristics un-
derlying the A/M steps, which can largely speed up the procedure and make
the implementation scalable for the large-scale TCC data.
Stepwise optimization strategy for efficiently guiding the search process. The
probability of observing a given contact in a specific structure is increased (or
decreased) by the presence of another contact in the same structure. For
example, a certain chromosome contact brings also other chromosome re-
gions into spatial proximity to each other, which in turn enhances their
chances of contacting each other in the same structure rather than in a

structure where the corresponding domains are far apart from each other
and cannot be brought into spatial proximity. This contact cooperativity
facilitates our optimization heuristics: (i) An initial model X that already fits a
portion of domain contacts in A can guide a more efficient search of the
optimum W than a random structure and (ii) gradually fitting an increasing
number of domain contacts (from the highest to the lowest contact proba-
bilities A) can effectively guide the search to the best solution. We therefore
designed a stepwise strategy to use these two heuristics. Specifically, we start
the first optimization step by using only the most frequent contacts Aθ1 (using
only aIJ ≥ θ1 and θ1 = 1.0) as input to obtain X̂θ1 , which reproduces Aθ1 (i.e., the
structure population contains all physical domain contacts according to the
experimental contact probability). Then X̂θ1 is used as the initial model of the
next round of optimization for Aθ2 , which includes all domain contacts with
lower contact probabilities (i.e., using only aIJ ≥ θ2 and θ2 < θ1). This in turn
leads to the refined structured population X̂θ2 , which covers more domain
contacts than X̂θ1 . We repeat this process, each time adding more domain
contacts to the input data (Aθ with lower θ), until Aθ is almost close to A.
Because errors in the conformation capture detection are expected to have
low frequencies, we typically stop at the threshold θ = 0.01 to reduce the
effect of experimental noise in the calculations. The final solution represents
the best approximation of the true structure population by reproducing most
elements of A. This stepwise procedure is illustrated in Fig. 1B.
Parallel and efficient optimization heuristics for the contact assignment step. The
A-step optimization problem is to “find the contact indicator tensor W
whose derived contact probability a′IJ best matches the observed aIJ for
every domain pair I and J″ (Fig. 1). We designed an efficient heuristic, that
is, a distance threshold method, to approximate the solution. We assume
that the assignments of a given chromatin contact across the contact in-
dicator tensor W are more likely realized in those genome structures in
which the corresponding chromatin domains are already closer in 3D space.
Our empirical results have shown its effectiveness and a detailed procedure
and explanation of this heuristics is described in SI Appendix, section A.1.6.
Here, it is briefly summarized as a process of determining the distance
threshold dact

IJ for each domain pair (I, J), based on the empirical distribu-
tion of all distances between their homologous copies across all structures
of the population. Then we determineW based on dact

IJ . This process is easily
implemented in parallel, because the distance threshold of each domain
pair can be independently calculated.
Parallel and efficient numerical approximation for the modeling step. Given the
current estimated contacts of W, the M-step reconstructs the structure pop-
ulation X that best matches W. In the M-step, because A and W are known, its
maximization problem in Eq. 5 can be reduced to max logPðWjXÞ, which can be
further decomposed to the subproblemmax log PðWmjXmÞ for every structurem
in the population, where PðWmjXmÞ=∏i,jPðwijmj~xim,~xjmÞ andWm is the contact
indicator matrix of structure m. Therefore, each individual structure can be in-
dependently optimized in parallel. To efficiently optimize an individual structure,
we used simulated annealing dynamics and conjugate gradient optimizations.

Detection of Centromere Cluster Recurrence Pattern. To identify the centro-
mere clusters that frequently occur in structures of the population, we
performed the following procedure:

i) Construct M = 10,000 centromere interaction networks from the structure
population. Each network corresponds to a structure, each node represents
a centromere, and two nodes are connected by an edge if the distance
between the centromere domains i and j is d_threshold ≤ 2(Rx

i +Rx
j ).

ii) Construct M “projected” centromere interaction networks, in which the
two homologous centromere copies are represented by a single node.
An edge between two nodes is present when there is at least one contact
between any of the two corresponding homologous centromere copies.

iii) To identify the frequently clustered centromeres, we represent the M pro-
jected networks as a third-order tensor and apply our tensor-based recur-
rent heavy subgraph discovery algorithm (47). We suppose that each heavy
subgraph (i) should consist of ≥3 nodes, (ii) occurs in at least ≥1% of the
structures in the population, and (iii) has a minimum network density 0.7.

iv) Among all projected frequent centromere clusters detected in step iii we
only consider those that exist in the original “unprojected” networks.

Cryo-SXT. Detailed experimental procedures of the cryo-SXT imaging of
Lymphoblastoid cells (GM12878) are described in SI Appendix, section A.11.
Projection images were collected at 517 eV using XM-2, the National Center
for X-ray Tomography soft X-ray microscope at the Advanced Light Source
of Lawrence Berkeley National Laboratory. For each dataset, 180 projection
images were collected sequentially around a rotation axis in 1° increments.
Projection images were manually aligned using IMOD software by tracking
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gold fiducial markers on adjacent images (54) and tomographic recon-
structions were calculated using the iterative reconstruction method (55, 56).
LAC values were determined as described previously (57).

Experimental Methods and Data Processing. The details of the TCC experiment,
data processing including matrix construction, data normalizations, genome
representations, and analysis methods are described in SI Appendix, section
A.3. The 3D FISH experiments and probe information are described in SI
Appendix, section A.10.

Data Accession Code. The TCC dataset as binary contact catalogs are publicly avail-
able in NCBI Sequence Read Archive repository under accession no. SRX030110.
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